Product Description
BEEST—-AIR COMPRESSOR&SOLUTION
Moair Energy Conservation Durable Two Stage Screw Air Compressor with Double Permanent Magnet Motor
1. Company background
ZheJiang CHINAMFG International Trade Co., Ltd. is the senior partner of HangZhou CHINAMFG Compressor Co., Ltd , we are committed to the sales and after-sales service of air compressors in Southeast Asia, and have stores in Indonesia.
We are the professional manufacturer of the air compressor products of various types including the permanent-magnet synchronous variable-frequency series,permanent-magnet synchronous low-pressure series,permanent-magnet sunchronous two-stage compressors series,etc.
More than 10 years of professional screw compressors manufacturing technology,bringing the international first-class permanent magnet synchronous drive and control technologies.
2. Product introduction
Equipped with an IE3 motor, the direct drive rotary screw air compressor consists of a high-accuracy screw and high-quality casting, with a wide variable range of parameters.
3.Core components
Motor
- More stable: no mechanical transmission troubles
There is no gear shaft in the air compressor and the effective permanent magnet motor and the male rotor are directly connected on 1 shaft without gear drive, which can eliminate pitting of gear or hidden troubles of tooth fracture.
Without shaft coupling, 2 integrated PM motors directly drive 2 airends of the air compressor, avoiding the hidden troubles of shaft coupling failure. - More energy-savings: the airend is always in a smooth running state
The 2 stage 3 phase permanent magnet rotary gear screw air compressor of CHINAMFG is powered by 2 independent PM motors and 2 independent inverters, which is intelligently controlled such as keep the airend running at a best level-pressure point by controlling discharge pressure and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of air compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency. - More effective: high-efficiency permanent magnet motor and no gear drive loss.
With a motor of a high protection degree of IP54, it is more energy-saving and it can stay effective at low frequency and low speed. - More environment-friendly operation with lower noise
No noise of motor bearings, gear meshing and coupling transmission. - More structure-compact
The volume of PM motor is small and the structure is compact, which can save much space.
4.Parameters
5. Principle of energy-saving
- Change the traditional induction motor with high-efficiency technology of permanent magnet rotary screw motor, thus reducing the consumption in transmission.
- Powered by 2 independent PM motors and 2 independent inverters, the compressor is intelligently controlled such as keep the airend running at a best level-pressure point by controlling pressure of air flow and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency.
- Because the gear ratio is fixed, point efficiency is emphasized in this case. That is to say, only with fixed rotary speed and rated pressure did it have the best specific power. When running in a state of variable speed and variable frequency, considering the fixed speed of gear, interstage pressure will not reach the best one. Rotational speed declining while energy consumption not declining at the same time, it is not suitable for running in variable speed and variable frequency state.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Service |
|---|---|
| Warranty: | One Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
.webp)
Can air compressors be used for gas compression and storage?
Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:
Gas Compression:
Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.
Gas Storage:
Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.
Gas Types:
While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:
- Nitrogen
- Oxygen
- Hydrogen
- Carbon dioxide
- Natural gas
- Refrigerant gases
It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.
By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.
.webp)
How do you maintain proper air quality in compressed air systems?
Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:
1. Air Filtration:
Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.
2. Moisture Control:
Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.
3. Oil Removal:
If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.
4. Regular Maintenance:
Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.
5. Air Receiver Tank Maintenance:
Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.
6. Air Quality Testing:
Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.
7. Education and Training:
Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.
8. Documentation and Record-Keeping:
Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.
By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.
.webp)
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.


editor by CX 2024-02-18
China supplier Twin-Screw Industrial Screw Type Air Compressor for Sale small air compressor
Product Description
REDUCE ENERGY CONSUMPTION
Under different conditions,the demand for gas will float.Through a large number of research and calculation of marketdemandCha nun confirmed it.Only about 10% of applications require stable air supplyTherefore,frequency conversioncompressor can play a greater role in energy saving.
Energy cost often accounts for 70% of the life cycle cost of a compressor. The production of compressed air may account for 40% of all electricity costs in the plant.In almost every factory,the gas consumption will vary with different time periods,with its high and low CHINAMFG periods. permanent magnet variable frequency screw air compressor can supply glass completely according to the requirements of gas consumption,which can not only save a lot of energy, but also protect theenvironment for future generations.
INTERIOR STRUCTURE
CUSTOM OIL
COOLED MOTOR
First-stage energy-efficient motor,Low Noise,IP65 protection grade
AUTOMOTIVE GRADE
PERMANENT MAGNET MOTOR
IE4 high efficiency permanent magnet motor.
AUTOMOTIVE PERMANENT MAGNET MOTOR ForN38UH high grade permanent magnet, IP67 protection grade, and fully enclosed structure uniquevacuum epoxy dipping paint,effectively guaranteeing the stable operation of unit.
CHANUN
CUSTOM CONVERTER
Permanent magnet variable-frequency conversion technology, wide voltage. energy-saving ,with a small impact on the power grid.
7 INCH TOUCH SCREEN
Large touch screen.all-round protection monitoring with functions of motor start/stopcontrol, operation control:reversal protection of air compressor: and multi-point temperature detection and control protection.
HIGH MOBILITY (OPTIONAL)
Easy and flexible to rotate. so that the air compressor is able to move conveniently andquickly (optional)
ZheJiang CHINAMFG Machinery Manufacturing Co. , Ltd. is located in HangZhou, ZheJiang .CHINAMFG is a comprehensive screw air compressor manufacturer that engaged in R & D, design, production and sales. It has a plant of 20,000 square meters, including a large production workshop,a comprehensive first-class exhibition hall and a testing laboratory.
CHINAMFG has excellent mechanical engineering designers, an experienced staff team and a professional management team. The production concept focuses on energy-saving and is committed to perfecting and improving the technological process in order to get the core technology of super frequency energy-saving, achieving the characteristics of mute, durability, power saving and safety.
The company has 9 series of products with multiple models. Including Fixed speed air compressor, PM VSD air compressor, PM VSD two-stage air compressor, 4-in-1 air compressor, Oil free water lubrcating air compressor, Diesel portable screw air compressor, Electric portable screw air compressor, Air dryer, Adsorption machine and the matching spare parts.
Dukas adheres to the business philosophy of cooperation and mutual benefit to provide a one-stop service for every customer!
CHINAMFG air compressors not only cover the domestic market but also are exported to more than 20 countries and regions such as South Africa, Australia, Thailand, Russia, Argentina, Canada and so on.
Dukas products have won a good reputation from users for their excellent quality and style. The company has always adhered to the concept of quality first, service first and dedication to providing every customer with excellent products and meticulous after-sales service!
Dukas warmly welcome customers to visit our factory and establish a wide range of cooperation!
Frequency Asked Question:
Q1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in Xihu (West Lake) Dis. County, HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 24 Hours |
|---|---|
| Warranty: | 2 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
Can air compressors be used for painting and sandblasting?
Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:
Painting:
Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:
- Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
- Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
- Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.
Sandblasting:
Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:
- Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
- Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
- Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.
When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.
Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How do you choose the right size of air compressor for your needs?
Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:
1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.
2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.
3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.
4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.
5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.
6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.
7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.
8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.
By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.


editor by CX 2024-02-18
China manufacturer Oil Free 7.5kw Pm Screw Air Compressor for Food &Medicine air compressor price
Product Description
Oil Free 7.5kw Pm Screw Air Compressor for Food &Medicine
Water lubricated oil free compressor-technical parameters:
| Model | Work pressure | Capacity | Power | Noise | Inlet and outlet diameters of cooling water | Water inlet & outlet T/H |
Lubricating water L |
Dimensions | Weight | Air outlet diameter
|
| WZS-06PMA | 8.5 | 0.3~0.78 | 5.5 | 57 | 3/4″ | 1.5 | 10 | 800x800x1100 | 460 | 3/4″ |
| 10.5 | 0.2~0.65 | |||||||||
| WZS-08PMA | 8.5 | 0.35~1.17 | 7.5 | 57 | 3/4″ | 2 | 10 | 800x800x1100 | 510 | 3/4″ |
| 10.5 | 0.3~1.05 | |||||||||
| 12.5 | 0.24~0.81 | |||||||||
| WZS-11PMA | 8.5 | 0.54~1.72 | 11 | 60 | 1″ | 2.5 | 26 | 1200x800x1300 | 620 | 3/4″ |
| 10.5 | 0.45~1.42 | |||||||||
| 12.5 | 0.35~1.10 | |||||||||
| WZS-15PMA | 8.5 | 0.75~2.43 | 15 | 60 | 1″ | 3.5 | 26 | 1200x800x1300 | 670 | 1″ |
| 10.5 | 0.65~2.17 | |||||||||
| 12.5 | 0.6~1.85 | |||||||||
| WZS-18PMA | 8.5 | 0.9~3.13 | 18.5 | 63 | 1″ | 4 | 30 | 1400x1000x1520 | 730 | 1″ |
| 10.5 | 0.9~2.82 | |||||||||
| 12.5 | 0.6~2.05 | |||||||||
| WZS-22PMA | 8.5 | 1.1~3.62 | 22 | 63 | 1 1/2″ | 5 | 30 | 1400x1000x1520 | 780 | 1″ |
| 10.5 | 0.97~3.21 | |||||||||
| 12.5 | 0.85~2.78 | |||||||||
| WZS-30PMA | 8.5 | 1.55~5.12 | 30 | 66 | 1 1/2″ | 7 | 40 | 1500x1150x1500 | 1150 | 1 1/2″ |
| 10.5 | 1.255~4.43 | |||||||||
| 12.5 | 1.1~3.63 | |||||||||
| WZS-37PMA | 8.5 | 1.91~6.30 | 37 | 66 | 1 1/2″ | 9 | 40 | 1500x1150x1500 | 1200 | 1 1/2″ |
| 10.5 | 1.60~5.33 | |||||||||
| 12.5 | 1.42~4.77 | |||||||||
| WZS-45PMA | 8.5 | 2.50~8.30 | 45 | 68 | 1 1/2″ | 10 | 90 | 1800x1300x1750 | 1490 | 2″ |
| 10.5 | 1.91~6.30 | |||||||||
| 12.5 | 1.70~5.56 | |||||||||
| WZS-55PMA | 8.5 | 3.0~9.76 | 55 | 69 | 1 1/2″ | 12 | 100 | 1800x1300x1750 | 1570 | 2″ |
| 10.5 | 2.60~8.55 | |||||||||
| 12.5 | 2.30~7.67 | |||||||||
| WZS-75PMA | 8.5 | 3.95~13.00 | 75 | 72 | 1 1/2″ | 18 | 100 | 1800x1300x1750 | 1750 | 2″ |
| 10.5 | 3.40~11.50 | |||||||||
| 12.5 | 3.0~9.70 | |||||||||
| WZS-90PMA | 8.5 | 5.0~16.60 | 90 | 73 | 1 1/2″ | 20 | 120 | 2200x1550x1800 | 2450 | 2 1/2″ |
| 10.5 | 4.30~14.66 | |||||||||
| 12.5 | 3.72~12.60 | |||||||||
| WZS-110PMA | 8.5 | 6.0~19.97 | 110 | 77 | 1 1/2″ | 24 | 120 | 2200x1550x1800 | 2580 | 2 1/2″ |
| 10.5 | 5.0~16.66 | |||||||||
| 12.5 | 4.65~15.56 | |||||||||
| WZS-132PMA | 8.5 | 6.75~22.52 | 132 | 77 | 2″ | 30 | 120 | 2200x1550x1800 | 2700 | 2 1/2″ |
| 10.5 | 6.0~19.97 | |||||||||
| 12.5 | 5.07~16.90 | |||||||||
| WZS-160PMA | 8.5 | 8.5~28.11 | 160 | 79 | 3″ | 35 | 160 | 3000x1800x2100 | 3900 | 3″ |
| 10.5 | 706~25.45 | |||||||||
| 12.5 | 6.7~22.52 | |||||||||
| WZS-185PMA | 8.5 | 10~33.97 | 185 | 79 | 3″ | 38 | 160 | 3000x1800x2100 | 4050 | 3″ |
| 10.5 | 8.72~29.00 | |||||||||
| 12.5 | 7075~25.210 | |||||||||
| WZS-200PMA | 8.5 | 11.2~36.75 | 200 | 80 | 4″ | 42 | 200 | 3100x1850x2100 | 4200 | 4″ |
| 10.5 | 9.68~32.78 | |||||||||
| 12.5 | 9.2~29.24 | |||||||||
| WZS-220PMA | 8.5 | 12.2~39.67 | 220 | 80 | 4″ | 47 | 200 | 3100x1850x2100 | 4400 | 4″ |
| 10.5 | 11.2~36.75 | |||||||||
| 12.5 | 9.0~29.63 | |||||||||
| WZS-250PMA | 8.5 | 13.5~44.78 | 250 | 80 | 4″ | 53 | 200 | 3100x1850x2100 | 4800 | 4″ |
| 10.5 | 12.3~39.67 | |||||||||
| 12.5 | 10.2~33.97 |
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, otherpayment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspectthe completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
Thank you very much for viewing this page, and wish you a nice day!
Contacts: Pasha Teng
Mob: -173-1757-2798 /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How Do You Ensure Proper Water Lubrication in Air Compressors?
Proper water lubrication in air compressors is essential for maintaining their performance, efficiency, and longevity. Here’s a detailed explanation of how to ensure proper water lubrication:
- Use High-Quality Water: Start by using high-quality water for lubrication. Ideally, the water should be clean, free from impurities, and have the appropriate chemical composition. Impurities or contaminants in the water can lead to increased wear, corrosion, and blockages in the compressor. Water treatment or filtration systems may be necessary to ensure the desired water quality.
- Monitor Water Supply: Ensure a consistent and adequate water supply to the compressor. Monitor the flow rate and pressure of the water supply to ensure it meets the requirements of the compressor’s lubrication system. Insufficient water flow can lead to inadequate lubrication, increased friction, and potential damage to the compressor components.
- Implement Proper Water Cooling: Compressed air generates heat during the compression process, and effective cooling is crucial to maintain safe operating temperatures and proper water lubrication. Ensure that the cooling mechanisms, such as water jackets or external cooling systems, are properly designed and sized to provide adequate cooling capacity. Monitor and control the water temperature to prevent overheating and ensure optimal lubrication.
- Optimize Water Distribution: Proper water distribution within the compressor is essential for effective lubrication. Ensure that the water is evenly distributed to all the necessary lubrication points, such as the bearings or other moving parts. Proper design and installation of water distribution systems, including pipes, fittings, and nozzles, are important to achieve uniform water distribution and prevent any dry spots or inadequate lubrication.
- Regular Maintenance: Implement a regular maintenance schedule for the water lubrication system. This includes periodic inspection and cleaning of water filters, strainers, or screens to prevent clogging and maintain proper water flow. Check for any leaks or malfunctions in the water distribution system and promptly address them. Regularly monitor water quality and perform any necessary water treatment or filtration to maintain optimal lubrication conditions.
- Follow Manufacturer Guidelines: Always follow the manufacturer’s guidelines and recommendations for water lubrication. Manufacturers provide specific instructions regarding water quality, flow rates, cooling requirements, and maintenance procedures for their compressors. Adhering to these guidelines ensures that the compressor operates within its intended parameters and maintains proper water lubrication.
By following these practices, you can ensure proper water lubrication in air compressors, promoting efficient operation, minimizing wear and tear, and extending the lifespan of the equipment. Regular monitoring, maintenance, and adherence to manufacturer guidelines are crucial to optimize water lubrication and overall compressor performance.
.webp)
Are There Regulations Governing the Use of Water-Lubricated Air Compressors?
When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:
1. Occupational Safety and Health Administration (OSHA) Regulations:
OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.
2. Environmental Protection Agency (EPA) Regulations:
The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.
3. International Organization for Standardization (ISO) Standards:
The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.
4. Manufacturer Guidelines and Recommendations:
In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.
It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.
By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.
.webp)
Advantages of Using Water as a Lubricant in Air Compressors
Water can be used as a lubricant in air compressors, offering several advantages over traditional lubricants such as oils or synthetic lubricants. Here are some of the advantages:
- Cost-effective: Water is a readily available and inexpensive resource, making it a cost-effective lubricant option for air compressors. Compared to oils or synthetic lubricants, water is significantly cheaper, which can result in cost savings for businesses and industries that heavily rely on air compressors.
- Environmentally friendly: Water is a non-toxic and environmentally friendly lubricant. It does not contain harmful chemicals or pollutants that can contribute to air or water pollution. Using water as a lubricant in air compressors reduces the risk of contamination and minimizes the environmental impact associated with traditional lubricants.
- Improved heat dissipation: Water has excellent heat transfer properties. It can absorb and dissipate heat more efficiently compared to oils or synthetic lubricants. Air compressors generate heat during operation, and using water as a lubricant helps to dissipate this heat effectively, preventing overheating and prolonging the lifespan of the compressor.
- Reduced fire hazard: Compared to oils or synthetic lubricants, water has a significantly higher flash point, which means it is less likely to ignite or contribute to fire hazards. This fire-resistant property of water makes it a safer lubricant choice, especially in environments where fire safety is a concern.
- Lower maintenance requirements: Water does not leave behind sticky residues or deposits, as some oils or synthetic lubricants might. This characteristic reduces the maintenance requirements of air compressors. It simplifies the cleaning process and reduces the frequency of lubricant changes, resulting in reduced downtime and maintenance costs.
Overall, using water as a lubricant in air compressors can offer significant advantages in terms of cost-effectiveness, environmental friendliness, heat dissipation, fire safety, and maintenance requirements.


editor by CX 2024-02-16
China Custom 16 Bar All in One Screw Air Compressor for Laser Cutting with Hot selling
Product Description
Product Parameters
| Model | Motor Power | Maximum Working Pressure | Free Air Delivery | Air Outlet Pipe Diameter | Weight | Dimensions(L*W*H) | |||
| kW | hp | bar(g) | psig | m³/min | cfm | kg | mm | ||
| BG10APMTD | 7.5 | 10 | 15.5 | 225 | 0.6 | 21 | G1/2″ | 440 | 1800*750*1400 |
| BG15APMTD | 11 | 15 | 16 | 232 | 0.9 | 32 | G3/4″ | 510 | 1800*750*1550 |
| BG20APMTD | 15 | 20 | 16 | 232 | 1.2 | 42 | G3/4″ | 590 | 1800*750*1550 |
| 20 | 290 | 1.0 | 35 | ||||||
| BG30APMTD | 22 | 30 | 16 | 232 | 2.2 | 78 | G1″ | 690 | 1800*850*1650 |
| 20 | 290 | 2.0 | 71 | ||||||
| BG50APMTD | 37 | 50 | 16 | 232 | 3.2 | 113 | G1-1/2″ | 930 | 2000*1000*1930 |
| 20 | 290 | 2.8 | 99 | ||||||
Company Profile
Wallboge is a high-tech enterprise and is considered 1 of the leading manufacturers of air compressor products in China. Our goal is to provide exceptional customer service coupled with quality products and energy saving solutions.
Wallboge’ s primary businesses focus in following key areas:
Integrated screw air compressor for laser cutting
Permanent magnet variable frequency screw air compressor
Two-stage compression permanent magnet variable frequency screw air compressor
Low pressure two-stage compression permanent magnet variable frequency screw air compressor
Low pressure permanent magnet variable frequency screw air compressor
Water-lubricated oil-free screw air compressor
Fixed speed screw air compressor
Oil-free screw blower
Screw vacuum pump
At Wallboge, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. CHINAMFG has been exporting to more than 150 countries across the globe.
Wallboge continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly. Wallboge’ s vision is to be a world-renowned high-end energy-saving machinery brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff, committed to continuously satisfying the needs of global companies by providing a full range of industrial air compression solutions.
Certifications
Exhibitions
After Sales Service
1. 24/7 after sales service in different languages.
2. Online instruction for installation and commissioning.
3. On-site instruction for installation and commissioning provided by well-trained engineers or local authorized service center.
4. CHINAMFG agents and after sales service available.
Our Advantages
1. Proven product quality.
2. Factory direct prices.
3. On-time delivery.
4. Prompt technical support in different languages before sales, in sales and after sales.
5. Small orders accepted to check quality first.
6. OEM & ODM service available.
FAQ
Q1: Are you a factory or a trading company?
A1: We are a factory. Please check our Company Profile.
Q2: What is the exact address of your factory?
A2: No. 588, East Tonggang Road, Shaxi Town, HangZhou City, ZheJiang Province, China
Q3: What is your delivery time?
A3: For standard voltage, the delivery time is 15 working days after you confirm the order. For non-standard voltage, please contact our sales to confirm the delivery time.
Q4: What kind of payment terms do you accept?
A4: We accept T/T, L/C at sight.
Q5: How long is the warranty of your air compressor?
A5: 2 years for the whole air compressor except consumable spare parts.
Q6: How long could your air compressor be used?
A6: Generally, more than 10 years.
Q7: What is your MOQ requirement?
A7: 1 unit.
Q8: Can you offer OEM & ODM service?
A8: Yes, with a professional design team, we can offer OEM & ODM service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Engineers Available to Overseas Service. |
|---|---|
| Warranty: | 2 Years |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
.webp)
How do oil-lubricated and oil-free air compressors differ?
Oil-lubricated and oil-free air compressors differ in terms of their lubrication systems and the presence of oil in their operation. Here are the key differences:
Oil-Lubricated Air Compressors:
1. Lubrication: Oil-lubricated air compressors use oil for lubricating the moving parts, such as pistons, cylinders, and bearings. The oil forms a protective film that reduces friction and wear, enhancing the compressor’s efficiency and lifespan.
2. Performance: Oil-lubricated compressors are known for their smooth and quiet operation. The oil lubrication helps reduce noise levels and vibration, resulting in a more comfortable working environment.
3. Maintenance: These compressors require regular oil changes and maintenance to ensure the proper functioning of the lubrication system. The oil filter may need replacement, and the oil level should be regularly checked and topped up.
4. Applications: Oil-lubricated compressors are commonly used in applications that demand high air quality and continuous operation, such as industrial settings, workshops, and manufacturing facilities.
Oil-Free Air Compressors:
1. Lubrication: Oil-free air compressors do not use oil for lubrication. Instead, they utilize alternative materials, such as specialized coatings, self-lubricating materials, or water-based lubricants, to reduce friction and wear.
2. Performance: Oil-free compressors generally have a higher airflow capacity, making them suitable for applications where a large volume of compressed air is required. However, they may produce slightly more noise and vibration compared to oil-lubricated compressors.
3. Maintenance: Oil-free compressors typically require less maintenance compared to oil-lubricated ones. They do not need regular oil changes or oil filter replacements. However, it is still important to perform routine maintenance tasks such as air filter cleaning or replacement.
4. Applications: Oil-free compressors are commonly used in applications where air quality is crucial, such as medical and dental facilities, laboratories, electronics manufacturing, and painting applications. They are also favored for portable and consumer-grade compressors.
When selecting between oil-lubricated and oil-free air compressors, consider the specific requirements of your application, including air quality, noise levels, maintenance needs, and expected usage. It’s important to follow the manufacturer’s recommendations for maintenance and lubrication to ensure the optimal performance and longevity of the air compressor.


editor by CX 2024-02-15
China Standard CHINAMFG Rand Next Generation R-Series Oil-Flooded Rotary Screw Air Compressors RS185I with Great quality
Product Description
Ingersoll Rand R Series Oil Flooded Rotary Screw Air Compressor
Model: RS185i
Ingersoll Rand works to keep you ahead of your competition with Next Generation R-Series air compressors that boost productivity, lower operating expenses and extend equipment life.
Next Generation R-Series air compressors.
The intelligence you need-to win.
World-Class Performance
State-of-the-art airend delivers as much as 16% improved efficiency and 21% greater airflow capacity;* 2 stage airend available for even greater efficiency and reduced bearing load to extend life
PAC protection, V-Shield technology and free-floating cooling system help maximize uptime
Xe-Series controller with intuitive, high-resolution colour display offers remote access with any common, current web browser
IE3 Premium Efficiency motor delivers significant energy savings, and the optional variable speed drive (VSD) further decreases energy demands
Air-cooled and water-cooled options to best match your operating environment
Harsh environment options for high and low ambient temperature as well as outdoor operation
Ingersoll Rand (NYSE:IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands-including Club Car , CHINAMFG Rand , CHINAMFG King and Trane -work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; and increase industrial productivity and efficiency. We are a $13 billion global business committed to a world of sustainable progress and enduring results.
Ingersoll Rand, IR, the IR logo, PAC software, V-Shield and Ultra Coolant are trademarks of CHINAMFG Rand, its subsidiaries and/or affiliates. All other trademarks are the property of their respective owners. CHINAMFG Rand compressors are not designed, intended or approved for breathing air applications. CHINAMFG Rand does not approve specialised equipment for breathing air applications and assumes no responsibility or liability for compressors used for breathing air service. Nothing contained on these pages is intended to extend any warranty or representation, expressed or implied, regarding the product described herein. Any such warranties or other terms and conditions of sale of products shall be in accordance with CHINAMFG Rand’s standard terms and conditions of sale for such products, which are available CHINAMFG request. Product improvement is a continuing goal at CHINAMFG Rand. Any designs, diagrams, pictures, photographs and specifications contained within this document are for representative purposes only and may include optional scope and/or functionality and are subject to change without notice or obligation.
Bestrand is a leading supplier of compressed air system. Past 10 years, we established very good partnership with CHINAMFG Rand. We have provided all kinds of products from CHINAMFG Land include air compressor, after treatment, spare parts to customers all over the world. Pls feel free to contact us for a quote.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling or Water Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in pharmaceutical manufacturing?
Air compressors play a crucial role in pharmaceutical manufacturing, where they are utilized for various critical applications. The pharmaceutical industry requires a reliable source of clean and compressed air to ensure the safety, efficiency, and quality of its processes. Here’s an overview of how air compressors are utilized in pharmaceutical manufacturing:
1. Manufacturing Processes:
Air compressors are used in numerous manufacturing processes within the pharmaceutical industry. Compressed air is employed for tasks such as mixing and blending of ingredients, granulation, tablet compression, coating, and encapsulation of pharmaceutical products. The controlled delivery of compressed air facilitates precise and consistent manufacturing processes, ensuring the production of high-quality pharmaceuticals.
2. Instrumentation and Control Systems:
Pharmaceutical manufacturing facilities rely on compressed air for powering instrumentation and control systems. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control temperature and pressure, and automate various processes. The clean and dry nature of compressed air makes it ideal for maintaining the integrity and accuracy of these critical control mechanisms.
3. Packaging and Filling:
Air compressors are employed in pharmaceutical packaging and filling processes. Compressed air is used to power machinery and equipment for bottle cleaning, labeling, capping, and sealing of pharmaceutical products. Compressed air provides the necessary force and precision for efficient and reliable packaging, ensuring product safety and compliance.
4. Cleanroom Environments:
Pharmaceutical manufacturing often takes place in controlled cleanroom environments to prevent contamination and maintain product quality. Air compressors are used to supply clean and filtered compressed air to these cleanrooms, ensuring a controlled and sterile environment for the production of pharmaceuticals. Compressed air is also utilized in cleanroom air showers and air curtains for personnel and material decontamination.
5. Laboratory Applications:
In pharmaceutical laboratories, air compressors are utilized for various applications. Compressed air is used in laboratory instruments, such as gas chromatographs, mass spectrometers, and other analytical equipment. It is also employed in clean air cabinets, fume hoods, and laminar flow benches, providing a controlled and clean environment for testing, analysis, and research.
6. HVAC Systems:
Air compressors are involved in heating, ventilation, and air conditioning (HVAC) systems in pharmaceutical manufacturing facilities. Compressed air powers the operation of HVAC controls, dampers, actuators, and air handling units, ensuring proper air circulation, temperature control, and environmental conditions in various manufacturing areas.
By utilizing air compressors in pharmaceutical manufacturing, the industry can maintain strict quality standards, enhance operational efficiency, and ensure the safety and efficacy of pharmaceutical products.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
- Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
- Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
- Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
- Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2024-02-15
China best 125HP 90kw Fixed Speed Screw Air Compressor for Painting and Sandblasting lowes air compressor
Product Description
Hot Selling Factory Directly Supply 125Hp 90KW Fixed Speed
Screw Air Compressor
| Model | AT-10HP | AT-15HP | AT-20HP | AT-30HP | AT-50HP | AT-60HP |
| Motor Power(KW) | 7.5 | 11 | 15 | 22 | 37 | 45 |
| Capacity/Pressure (m3/min/MPa) |
1.2/0.7 | 1.71/0.7 | 2.3/0.7 | 3.8/0.7 | 6.4/0.7 | 8.5/0.7 |
| 1.1/0.8 | 1.65/0.8 | 2.25/0.8 | 3.6/0.8 | 6.2/0.8 | 8.0/0.8 | |
| 0.9/1.0 | 1.32/1.0 | 1.8/1.0 | 3.0/1.0 | 5.6/1.0 | 7.5/1.0 | |
| 0.8/1.2 | 1.1/1.2 | 1.6/1.2 | 2.6/1.2 | 5.0/1.2 | 7.0/1.2 | |
| LubricLGPMing oil(L) | 12 | 16 | 16 | 22 | 26 | 26 |
| Noise db(A) | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 | 60-70±2 |
| Length(mm) | 780 | 1050 | 1050 | 1300 | 1470 | 1460 |
| Width(mm) | 600 | 700 | 700 | 850 | 1000 | 1000 |
| Height(mm) | 1571 | 1150 | 1150 | 1100 | 1380 | 1380 |
| Weight(Kg) | 215 | 330 | 335 | 465 | 630 | 825 |
| Model | AT-75HP | AT-100HP | AT-125HP | AT-150HP | AT-175HP | AT-200HP |
| Motor Power(KW) | 55 | 75 | 90 | 110 | 132 | 160 |
| Capacity/Pressure (m3/min/MPa) |
10.5/0.7 | 13.2/0.7 | 16.2/0.7 | 21.0/0.7 | 24.6/0.7 | 31.0/0.7 |
| 10.0/0.8 | 13.0/0.8 | 15.8/0.8 | 20.0/0.8 | 23.0/0.8 | 30.0/0.8 | |
| 8.5/1.0 | 10.9/1.0 | 14.0/1.0 | 18.0/1.0 | 21.0/1.0 | 26.0/1.0 | |
| 7.6/1.2 | 9.8/1.2 | 12.8/1.2 | 16.0/1.2 | 18.8/1.2 | 22.0/1.2 | |
| LubricLGPMing oil(L) | 54 | 54 | 72 | 90 | 90 | 90 |
| Noise db(A) | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 | 70-76±2 |
| Length(mm) | 1900 | 1900 | 1900 | 2571 | 2571 | 2360 |
| Width(mm) | 1250 | 1250 | 1250 | 1590 | 1590 | 1610 |
| Height(mm) | 1600 | 1600 | 1600 | 1810 | 1810 | 1860 |
| Weight(Kg) | 1130 | 1230 | 1325 | 1520 | 1710 | 1850 |
Specializing in CHINAMFG for over 15years
ZheJiang Compressor Import & Export Co.,Ltd is a company integrating air compressor production and trade. located in the logistics capital of China, 1 of the important birthplaces of Chinese civilization-HangZhou, ZheJiang Province.
With professinal manufacturing experience and first -class comprehensive scientific and technological strength of the talent team, as the energy-saving compressor system leader and remowed in the industry,We specializes in R & D and sales of power frequency ,permanent magnet frequency conversion ,two -stage compressor permanent magnet frequency conversion ,low -voltage and mobile screw air compressor . With a deep industry background , 1 step ahead ambition .
With the professional enthusiasm for screw air compressor , team innovation , to meat the challenges of enterprise’s own determination and the rigorous attitude of excellence,products are strictly in accordance with IOS 9001 international quality procedures,to provide customers with energy -saving and reliable products .
We warmly welcomes people from all around the world to visit the company to guide the establishment of a wide range of business contacts and cooperation .
Choosing KOMPRESSOR compressor is to choose quality and service ,choose culture and taste ,choose a permanent and trustworthy partner !
FAQ
Q1: Are you factory or trade company?
A1: We are a company integrating air compressor production and trade. Please check Our Company Profile.
Q2: What the exactly address of your factory?
A2: Room 1016, Building 1, IEC international Enterprise Center , Liuqing Street, LHangZhou District , HangZhou , ZheJiang
Q3: Warranty terms of your machine?
A3: 18 months warranty for the machine,technical support according to your needs.
Q4: Will you provide some spare parts of the machines?
A4: Yes.
Q5: How long will you take to arrange production?
A5: Deliver standard goods within 30days, Other customized goods is TBD.
Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Customization: |
Available
|
|
|---|
.webp)
What is the role of air compressors in power generation?
Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:
1. Combustion Air Supply:
Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.
2. Instrumentation and Control:
Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.
3. Cooling and Ventilation:
In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.
4. Cleaning and Maintenance:
Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.
5. Pneumatic Tools and Equipment:
In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.
6. Nitrogen Generation:
Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.
7. Start-up and Emergency Systems:
Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.
Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2024-02-14
China Custom CHINAMFG UK Brand Hot Selling Two Stage Technologically Advanced Screw Type Air Compressor Machines Laser Air Compressor air compressor for sale
Product Description
Geso UK brand all in 1 screw air compressor
Product Description
Product Parameters
Certifications
Packaging & Shipping
Company Profile
Geso is a global aerodynamic systems group of companies, wholly owned by BAE CHINAMFG SYSTEMS, headquartered in London, United Kingdom, and a leader in the European gases sector.
BAE Systems, the parent company of CHINAMFG Group, was founded in 1871 and is committed to the research and development and production of industrial gases. In 2002, BAE Systems set up a representative office in China, importing products from the United Kingdom to China and deploying after-sales service offices in China, and in 2018 BAE Systems established a wholly-owned company “ZheJiang Geso systems Industrial PLC and invested 11 million U.S. dollars to build an intelligent manufacturing center; dedicated to research and development, production and market development. Our products include energy-saving screw air compressors, nitrogen/oxygen generators, dry oil-free air compressors, water-lubricated oil-free air compressors, mobile air compressors, process gas compressors, medium and high-pressure screw air compressors, centrifugal air compressors, etc., which are widely utilized in various production and industrial fields, and we have set up the “ZheJiang Geso systems Industrial PLC”, “ZheJiang Geso Equipment Co.,Ltd.”, “ZheJiang Geso Energy Equipment Co.,Ltd.” 3 companies, more than 30 branches and offices throughout the country, more than 200 distributors, for all walks of life to provide high-quality intelligent energy-saving air compressor system solutions.
Geso Group inherits the advanced technology and production management mode of British BAE Systems, combined with the Chinese market demand, in order to ensure the production safety of the user, strictly follow the Group’s product development process, each new product after 40 test items and 3000 hours of durability testing, to protect the quality of the product from the source; CHINAMFG compressor adopts the high quality screw compression element developed by BAE Systems, The material is used in the construction of large ships and nuclear submarines, which ensures the service life of the air compressor. The structure of the air compressor has been developed by the design team of BAE Group headquarters, which ensures the product quality and energy-saving effect. IE5 energy-saving motors, ABB electronic control system, and three-stage frequency conversion energy-saving system are selected to reduce energy consumption and carbon dioxide emissions, which saves costs for customers and realizes small investment and big power. Meanwhile, by optimizing the design and reducing the screw compression element’s speed, our air compressors have excellent silent performance. Independent research and development of intelligent Internet of Things (IoT) technology realizes the automatic and precise supply of air compressor and nitrogen generator equipment with the actual demand amount of the user to meet the automation experience of unattended, remote alarm, maintenance reminder, energy consumption management, intelligent file, data analysis, seamless docking and evaluation feedback. Convenient interconnected management with air compressors is realized through computers, cell phones and iPads. In addition, the reasonable construction and excellent workmanship of Geso reduces unnecessary maintenance work in normal times, making maintenance more convenient and efficient.
Through years of high-speed development, Geso Group has service outlets in more than 2 hundred cities across the country, 24-hour service hotline response and Internet warranty service. Thirteen direct spare parts warehouses to provide customers with repair services in a more rapid and timely manner.
After-sales service is not only limited to the product itself, but also includes a series of complete systematic services such as compressed air system testing and optimization, intelligent air supply control for air compressors, waste heat recovery, variable frequency piping, piping, cables, and construction turnkey projects. The service engineers not only undergo strict training and assessment, but also equipped with professional testing and maintenance tools to provide customers with quality service experience and escort production.
We are committed to a lifetime free of labor charges to reduce the user’s cost of use and avoid the phenomenon of indiscriminate charges. Based on our service concept to provide customers with free training services, regular testing of the user’s energy efficiency report data and develop energy-saving programs to ensure user satisfaction and energy-saving effect. For 3 consecutive years, we have been selected as 1 of the top 10 brands by third-party organizations such as China Brand Network.
As a global aerodynamic systems group of companies, we carry the mission of innovation, quality and service. Whether it is energy saving and environmental protection, quiet performance or intelligent, always adhere to the praise of the customer experience as the center of the hard workers, Geso, to create a global CHINAMFG brand of fluid machinery, and continue to become a high-end energy-saving products industry leader.
Timeline of Geso history
BAE MARCONI ELETRONIC SYSTEMS was founded in 1871 in London, England. In the same year, we developed and produced the first reciprocating compressor and devoted ourselves to the development and production of industrial gases.
In 1910, the company’s main business expanded to multiple areas: air compressors, nitrogen/oxygen air separation equipment, integrated electronic products, the company’s core product development of single-cylinder reciprocating air compressor technology and mass production.
In 1999, the company was founded as “BAE CHINAMFG SYSTEMS LTD” and developed the first twin-screw air compressor and established the brand “GESO SYSTEMS”.
In 2000, the company developed and produced the first dry-type oil-free screw machine into the market, and it is widely used in the European medical, food and electronic industries.
In 2002, BAE Group set up a representative office in China, products from the United Kingdom after the production of original imported equipment for the Chinese market expansion, and successfully entered the Chinese aerospace and high-precision machining field market.
In 2006, a total of 26 after-sales service operation outlets were built in each provincial capital city in China, fully deploying the after-sales service system to quickly respond to and safeguard users’ experience and production safety.
In 2016, a warehousing and logistics center was established in ZheJiang , China, to ensure the timely supply of complete machines and spare parts for the Chinese market.
In 2018, the British BAE Group registered in China to establish “ZheJiang Geso systems Industrial PLC” and set up a compressor assembly and production plant in ZheJiang , China at the same time, with a registered capital of 11 million U.S. dollars.
In 2571, ZheJiang Geso systems Industrial PLC. invested and established “ZheJiang Geso Equipment Co., Ltd.” and set up a nitrogen/oxygen air separation equipment sales company in HangZhou, and in the same year, set up the second phase of the project of 300 sets of nitrogen/oxygen equipments in ZheJiang factory. The R&D and production of nitrogen/oxygen control equipment was added.
In 2571, we invested in the establishment of “ZheJiang Geso Energy Equipment Co., Ltd.” and registered some of the former offices in provincial capitals as branches to complete the separation of production and sales, and to realize the high efficiency and convenience of national market development and service.
Our Advantages
Core components: the screw compression element adopts the British R & D BAES series screw compression element , the material is used in the United Kingdom in the construction of aircraft carriers, nuclear submarine construction , fine material to ensure that the service life of the air compressor, decades still as new; high-quality S K F bearings life as high as 100,000 (100 thousand) hours; the use of imported ASCO valves and CHINAMFG solenoid valves ABB electrical components, to ensure that the system is safe and stable operation for long periods of time.
Science and technology research and development: the structure of the air compressor is developed by the design team at the headquarters of BAE Group in the UK, so that the quality and energy saving of the air compressor is satisfactory to the users. The R&D personnel of the British headquarters total 220 people, dedicated to energy-saving system research and development funds of 1.5 million U.S. dollars per year, to ensure that the equipment of energy-saving products of superiority; air separation equipment selection of the German CHINAMFG controller and touch screen, flow, purity, pressure and dew point intuitively presented in the touch screen, the process and the action screen vivid image, at a glance, leaving the DCS remote ports, the data can be transmitted to a centralized control room and cell phone terminal. The data can be transmitted to the central control room and mobile phone;
Energy saving and environmental protection: IE5 energy-saving motors, ABB electronic control system, three-level frequency conversion (motor, fan, oil pump) energy-saving system, in the selection of materials and process design, the selection of special stainless steel management connection, the design of which ensures that the internal leakage of air compressor air volume ≤ 0.571m³/min, the use of imported fibers oil and gas separation technology and oil and gas barrel precision design, the reasonable location of the pipeline with the air compressor The internal pressure difference ≤ 0.003MPa, thus reducing energy consumption, reducing carbon dioxide emissions, reducing the use of cost, small investment, big power;
Strong silent performance: through the optimization of air compressor design and air compression element performance enhancement, reduce the air compression element speed, not only to extend the service life of the air compressor, and at the same time significantly reduce the noise generated by the equipment, CHINAMFG polyester fiber polymer material developed from the sound insulation cotton and customized rubber shock absorbers, the silent equipment to bring the protection of the equipment, equipment operators and production personnel to bring the health and safety of the guarantee;
High degree of automation: The company has independently developed intelligent Internet of Things technology combined with air compressor and nitrogen generator equipment, which collects data to the cloud data processor through 2G/4G/NB-loTLoRa/Ethernet, automatically matches the accurate supply of gas with the user’s actual demand, and realizes the automation experience of unmanned, remote alarm, maintenance reminder, energy consumption management, intelligent file, data analysis, seamless docking, and evaluation feedback. It realizes unattended remote alarm, maintenance reminder, energy consumption management, intelligent file, data analysis, seamless connection, evaluation and feedback.
Convenient maintenance: reasonable construction, fine workmanship, reduce the usual unnecessary maintenance, cleaning and maintenance is more convenient, in the special design process, so that the efficiency of the maintenance staff to improve, to protect the user to use the timeliness;
One-stop service: complete product range, one-stop service for air system and gas engineering.
Qualification and certification: Geso has obtained ISO14001 environmental management system, ISO45001 health management system and ISO9001 quality management system certification, certificate 0 oil-free certification, CE EU certification, air compressor energy-efficiency certification, 3A integrity system certification and other certificates from authoritative certification organizations, which can fully guarantee the safety of users, and has been highly recognized by the market and users. We are highly recognized by the market and users.
Product Manufacturing and Acceptance Standards
The design, manufacture, installation and acceptance of screw air compressor are all based on the relevant Chinese national standards (GB) and in accordance with the requirements of the following relevant standards, norms and regulations (but not limited to), with full consideration of the impact of local environmental conditions and conditions of use.
| No. | Standard | Item |
| 1 | GB150-1998 | Steel Pressure Vessels |
| 2 | GB151-1998 | Steel Shell and Tube Heat Exchangers |
| 3 | JB/T4709 | Steel Pressure Vessel Welding Regulations |
| 4 | GB/T13278 | Technical conditions for general screw air compressors |
| 5 | GBJ78 | Noise hygiene standards for industrial enterprises |
| 6 | GB3853 | Test Methods for Pneumatic Compressor Performance for General Use |
| 7 | GB4980 | Determination of sound power level of volumetric compressor noise – Engineering method |
| 8 | JB8-82 | Product Labeling |
| 9 | ASME-PTC-9-1970 (American Society of Mechanical Engineers standards) |
Air compressor performance test standards |
| 10 | VDI-2056 (Standard of the Association of German Engineers) | Operating Vibration Test Standards |
| 11 | ISO-2151 (International Organization for Standardization standard) | Operating Noise Test Standards |
| 12 | GBJ29-90 | Compressed air station design specification |
| 13 | GB3323-87 | Radiographic and quality analysis of steel melting welded joints |
| 14 | GB4720 | Electrical Control Equipment Part I Low Voltage Electrical Control Equipment |
| 15 | JB4127 | Mechanical Seal Technical Condition 3 Main Technical Data |
After Sales Service
1 Technical services: regardless of pre-sale, sale, after-sale, as long as the user side demand equipment technical help and consulting, the company will be accurate within 24 hours to provide relevant technical information free of charge.
2 After the successful on-site start-up and commissioning acceptance, our after-sales engineers are responsible for the user’s operators to carry out routine and emergency operation training.
3 Under normal operation, maintenance and repair of the equipment, the whole unit is guaranteed for 1 year, and the air compression element is guaranteed for 5 years. During the warranty period, the non-wearable parts in the unit, damage or failure under normal use, are gratuitous compensation, free of charge replacement.
4 Regardless of the warranty period inside and outside, my company will be on schedule to the factory inspection of gas purity, flow, pressure, voltage, current, screws tightness, etc. are to do a comprehensive test in a timely manner to understand the dynamics of the unit’s operation, such as receiving the notification of the user’s equipment failure, on-call.
5 In normal operation, my company will be monthly, quarterly and regularly arranged for the user to telephone or after-sales engineers to the scene to do the equipment operation visit work, timely understanding of the unit operation dynamics, received the user equipment failure notification, the office to immediately give a telephone reply, within 1 hour to the scene to deal with. Office in the field can not deal with the situation, the ZheJiang head office will be sent directly to the scene within 24 hours to deal with after-sales engineers. In order to ensure the long-term stability of the equipment work.
6 Spare parts service: In case of damage to tubing parts, Geso will solve the problem first, then determine the responsibility, and then talk about the price, and then replace the parts after the problem is solved.
7 Free labor fee, Geso company lifetime free labor fee, reduce the user cost of use, to avoid the phenomenon of indiscriminate charging.
8 Service quality assurance: the company’s after-sales service personnel in the headquarters of the Geso after systematic training and strict examination to obtain technical certificates to ensure that each after-sales service personnel’s ability to deal with technology.
9 Service outlets: the company has after-sales service outlets in most areas of China, to ensure that the user’s problems are solved in a short period of time and there is a storage center in the after-sales service outlets to ensure the timely supply of spare parts.
10 Free training service: Geso company through the site operation training to ensure the correct use of the user operator, Geso company will be adjusted for the user personnel, re-training on-site personnel operation, each training are not charged any fees.
11 Energy-saving services: If you buy our product line, our company will regularly test the user energy efficiency report data, energy-saving data distraction and develop programs, timely energy-saving adjustments to the equipment, to protect the user’s energy savings and cost reductions.
Customer Cases
| No. | Customer‘s company name | Quantities |
| 1 | HangZhou Risen Electromechanical Co.,Ltd. | 5 units |
| 2 | HangZhou Nuoyi Laser Equipment Co.,Ltd. | 3 units |
| 3 | ZHangZhoug Luneng Renewable Resources Co.,Ltd. | 4 units |
| 4 | HangZhou Renliang Medical Machinery Equipment Co.,Ltd. | 2 units |
| 5 | ZheJiang CHINAMFG Limited Liability Company | 6 units |
| 6 | HangZhou CHINAMFG Machinery Co.,Ltd. | 1 unit |
| 7 | HangZhou CHINAMFG Trading Co.,Ltd. | 1 unit |
| 8 | ZheJiang Veneta Clothing Co.,Ltd. | 1 unit |
| 9 | ZheJiang CHINAMFG Intelligent Equipment Co.,Ltd. | 7 units |
| 10 | HangZhou CHINAMFG Construction & Installation Engineering Co.,Ltd. | 6 units |
| 11 | ZheJiang Zhongfa Environmental Protection Co.,Ltd. | 6 units |
| 12 | ZheJiang CSIC Lingang Shipbuilding Equipment Co.,Ltd. | 2 units |
| 13 | ZheJiang Wangxin Soybean Products Equipment Co.,Ltd. | 2 units |
| 14 | ZheJiang Zhi Fu Pharmaceutical Technology Partnership (Limited Partnership) | 2 units |
| 15 | Hongli Shoe Material | 5 units |
| 16 | HangZhou HangZhoun Metal Products Co.,Ltd. | 6 units |
| 17 | ZheJiang CHINAMFG Logistics Machine Co.,Ltd. | 3 units |
| 18 | ZheJiang Qiangxiong Construction Group Co.,Ltd. | 5 units |
| 19 | HangZhou CHINAMFG Logistics Machine Co.,Ltd. | 4 units |
| 20 | Hongzheng Electric Co.,Ltd. | 3 units |
| 21 | HangZhou Hengjun Technology Co.,Ltd. | 3 units |
| 22 | ZheJiang Dajing Biological Engineering Co.,Ltd. | 5 units |
| 23 | HangZhou Yi Ai Electronic Technology Co.,Ltd. | 7 units |
| 24 | ZheJiang Shengwei Bio-technology Co.,Ltd. | 2 units |
| 25 | ZheJiang Jiuding New Material Co.,Ltd. | 4 units |
| 26 | HangZhou Xitu Environmental Protection Technology Co.,Ltd. | 2 units |
| 27 | ZheJiang Taiqing Mechanical & Electrical Co.,Ltd. | 3 units |
| 28 | HangZhou Guitai Pipe Industry Co.,Ltd. | 6 units |
| 30 | HangZhou Przeszler Advanced Molding Technology Co.,Ltd. | 4 units |
| 31 | HangZhou CHINAMFG Thermal Power Co.,Ltd. | 1 unit |
| 32 | HangZhou Tellier Environmental Protection Group Co.,Ltd. | 1 unit |
| 33 | ZheJiang CHINAMFG Electric Power Design & Consulting Co.,Ltd. | 3 units |
| 34 | HangZhou Hongfengde Auto Parts Co.,Ltd. | 2 units |
| 35 | ZheJiang ZHangZhoug Mining Group Company Limited Danying Coal Mine, Gubao Township, Xiwen County | 6 units |
| 36 | ZheJiang Zhongmin Da Zheng Surface Engineering Technology Co.,Ltd. | 4 units |
| 37 | NDT Group YuHangZhou Environmental Protection Equipment Manufacturing Co.,Ltd. | 4 units |
| 38 | ZheJiang Vimet Decoration Material Technology Co.,Ltd. | 3 units |
| 39 | Kangyue Biotechnology Co.,Ltd. | 2 units |
| 40 | HangZhou Kangcai Medical Supplies Co.,Ltd. | 5 units |
| 41 | Dejuxin Energy Saving Technology (HangZhou) Co.,Ltd. | 3 units |
| 42 | HangZhou CHINAMFG Packaging Industry Co.,Ltd. | 2 units |
| 43 | HangZhou Tianlai Environmental Protection Equipment Co.,Ltd. | 6 units |
| 44 | HangZhou Yongzhengxin Hardware Machinery Factory | 3 units |
| 45 | HangZhou Industrial Park Shunhao Machinery Factory | 2 units |
| 46 | HangZhou Chemical Machinery Manufacturing Co.,Ltd. | 2 units |
| 47 | HangZhou Dehai Environmental Protection Technology Development Co.,Ltd. | 3 units |
| 48 | ZheJiang Maosheng Environment Co.,Ltd. | 1 unit |
| 49 | Air Force Engineering University Aviation Engineer Officer School | 1 unit |
| 50 | ZheJiang Tiantuo Equipment Manufacturing Co.,Ltd. | 1 unit |
| 51 | HangZhou Chemical Machinery Manufacturing Co.,Ltd. | 2 units |
| 52 | HangZhou HangZhou Clothing Co.,Ltd. | 2 units |
| 53 | HangZhou CHINAMFG Glass Co.,Ltd. | 2 units |
| 54 | HangZhou City HangZhou Xihu (West Lake) Dis.ent City Development and Management Co.,Ltd. | 2 units |
| 55 | HangZhou Sunshine CHINAMFG Chemical Engineering Co.,Ltd. | 3 units |
| 56 | HangZhou CHINAMFG Electric Appliance Manufacturing Co.,Ltd. | 4 units |
| 57 | HangZhou Xihu (West Lake) Dis. Electric Co.,Ltd. | 3 units |
| 58 | HangZhou Saida Construction Machinery Co.,Ltd. | 2 units |
| 59 | HangZhou Tellier Environmental Protection Co.,Ltd. | 1 unit |
| 60 | ZheJiang Lvjing Environmental Protection Technology Engineering Co.,Ltd. | 1 unit |
| 61 | China Construction Third Bureau Second Construction Engineering Co.,Ltd. | 1 unit |
| 62 | HangZhou Przeszler Advanced Molding Technology Co.,Ltd. | 1 unit |
| 63 | HangZhou Bochuang Environmental Protection Technology Co.,Ltd. | 2 units |
| 64 | HangZhou Hi-Tech Zone Azure Environmental Protection Technology Co.,Ltd. | 1 unit |
| 65 | ZheJiang Renze Technology Co.,Ltd. | 1 unit |
| 66 | Dejuxin Energy Saving Technology (HangZhou) Co.,Ltd. | 1 unit |
| 67 | ZheJiang Haibelian Kaihe Roofing Engineering Co.,Ltd. | 1 unit |
| 68 | ZheJiang Xihu (West Lake) Dis. Technology Co.,Ltd. | 2 units |
| 69 | HangZhou Huagong CHINAMFG Electronics Co.,Ltd. | 1 unit |
| 70 | HangZhou Oriental Environmental Engineering Research Institute Co.,Ltd. | 2 units |
| 71 | HangZhou Hi-Tech Zone Azure Environmental Protection Technology Co.,Ltd. | 2 units |
| 72 | HangZhou Bochuang Environmental Protection Technology Co.,Ltd. | 1 unit |
| 73 | ZheJiang Prime New Energy Technology Co.,Ltd. | 3 units |
| 74 | Daiko International Trading (ZheJiang ) Co.,Ltd. | 1 unit |
| 75 | ZheJiang Qiangxiong Construction Group Co.,Ltd. | 3 units |
| 76 | HangZhou Kelen Commercial Equipment Co.,Ltd. | 2 units |
| 77 | ZheJiang Bigo Electromechanical Equipment Co.,Ltd. | 2 units |
| 78 | ZHangZhoug Qier Electromechanical Technology Co.,Ltd. | 4 units |
| 79 | HangZhou Xihu (West Lake) Dis.deli Biotechnology Co.,Ltd. | 3 units |
| 80 | ZheJiang Normal University | 1 unit |
| 81 | Jumin Biotechnology Co.,Ltd. | 3 units |
| 82 | HangZhou Sanfengqiao Foodstuffs Co.,Ltd. | 3 units |
| 83 | HangZhou Jinji Strong Magnetic Co.,Ltd. | 1 unit |
| 84 | ZheZheJiang di Industrial Co.,Ltd. | 1 unit |
| 85 | Zhongtian Chaolong Technology Co.,Ltd. | 3 units |
| 86 | ZheJiang WHangZhou Pharmaceutical Co.,Ltd. | 1 unit |
| 87 | ZheJiang Hadajiang Liquor Liability Company | 1 unit |
| 88 | Jacoby Environmental Materials Technology (ZheJiang ) Co.,Ltd. | 5 units |
| 89 | HangZhou CHINAMFG Construction & Installation Engineering Co.,Ltd. | 1 unit |
| 90 | ZHangZhoug Province Mechanical and Electrical Design and Research Institute Co.,Ltd. | 1 unit |
| 91 | HangZhou CHangZhou District Hengwei Machinery Trading Co.,Ltd. | 1 unit |
| 92 | ZheJiang Jiao Tong University | 2 units |
| 93 | Chang Xihu (West Lake) Dis. (Individual) | 2 units |
| 94 | HangZhou Xihu (West Lake) Dis.wang Paper Co.,Ltd. | 3 units |
| 95 | HangZhou CHINAMFG Mould Technology Co.,Ltd. | 2 units |
| 96 | HangZhou Institute of Technology | 1 unit |
FAQ
[Q]: Are you a manufacturer or a trade company?
A : We are a factory, and we have our own factory in ZheJiang , we market our own products.
[Q]: What is your lead time?
A :Usually we will spend about 30 working days to make it.
[Q]: What is the shipping port?
A :ZheJiang ,HangZhou or HangZhou
[Q]: How can I get your quotation?
A : We will provide the quotation according to your request as soon as possible.
Before quotation, We would like to know:
1 you are end user or mid-buyer(agent, distributor,Supporting Enterprise or designing institute etc.)
2 if you are end user, what industry are you in?
3 have you bought such equipment before, what brand?
4Direction of use (where the compressor is used, what equipment it supplies)
5 What delivery volume, delivery pressure, whether frequency conversion, whether with after-treatment equipment do you want?
6 Have you ever heard about our brand:GESO
[Q]: What is your Quality assurance system?
A : ZheJiang Geso systems Industrial PLC is a wholly foreign-owned enterprise, and is also the authorized base for the production and assembly of screw compressors by BAE Systems in the UK. The company has passed ISO9001:2015 quality system certification of enterprises, ISO45001:2018 health and safety management system and ISO14001:2015 environmental management system and many other certifications. The company, from the chairman to every employee, has been trained in the world’s advanced quality system in order to obtain the induction certificate. Every year, we need to be reviewed and recognized by the certification body, and strictly in accordance with the certification system for each link in the strict day-to-day management of its products, procurement, inspection, testing, installation and commissioning of the whole machine are strictly in accordance with the ISO9001 program, to ensure that each compressor embodies the factory should be the quality and reliability of the company’s products with a high starting point, high-speed start, with a high reputation and high quality! The company’s products have a high starting point and high speed to start, with high reputation and high quality to win the trust of users from all walks of life. The company’s products to implement the 3 bags, 3 bags for 1 year. The company shall bear the replacement cost of parts, repair cost and transportation and miscellaneous cost of equipment round trip (except perishable parts such as 3 filters, lubricating oil and external auto-drainer) during the warranty period of the supplied equipments. If the rework or equipment damage is caused by our company’s drawings, data, technical documents errors or technical service personnel on-site guidance, our company is immediately responsible for free repair or replacement.
[Q]: What does your brand “GESO” mean?
A : Gas: Description of Geso products characterized as equipment for applications in the field of all types of gas processes.
Efficient: Design, innovation and development of a full range of products for the purpose of energy saving.
Stability: to ensure the user’s production safety and stability as a prerequisite requirement
OPTIMUM : to build a world-renowned brand of fluid machinery, and continue to become the industry leader in high-end energy-saving products.
Systems : the business philosophy centered on the praise of service customer experience. CHINAMFG provides compressors, after-treatment, pressure vessels, installation piping, intelligent cloud, air separation equipment and other series of products, providing users with one-stop product services; from pre-sales program design, installation of equipment during the sale, after-sales maintenance to create a full-system operation and service team.
Air Compressor Frequently Asked Questions
The following items are some of the most frequently asked air compressor questions and answers, courtesy of CHINAMFG systems.
How Does an Air Compressor Work?
An air compressor works by using electric power to create pressurized air that can then be released and converted to usable power for use in a number of applications, depending on your specific needs. It performs this by compressing air within a chamber by means of a piston, rotary vane or screw or scroll element and then releasing this pressurized air into your downstream receivers and distribution piping system.
How Do You Use an Air Compressor?
Follow these simple steps to use your air compressor safely and efficiently:
1. Check the oil level: For oil-filled compressors, check that the oil level reaches about ⅔ of the way up the dipstick.
2. Prepare the compressor: Attach hoses, plug into a grounded outlet, check the drain valve and flip the power switch.
3. Adjust the pressure regulator: Set the pressure to match the level your air tool requires.
4. Operate your device: The tank will refill as you use your tool.
5. Complete proper cleanup: Turn off the compressor to drain the pressure and open the air tank drain valve to clear out condensation.
What Does an Air Compressor Do?
Air compressors provide compressed air for applications such as filling gas cylinders with high-pressure clean air, providing pressurized clean air for operating pneumatic CHINAMFG systems or tools, filling tires and a wide variety of other applications across industries like automotive, medical, food and beverage, petroleum, pharmaceutical and more.
What Do You Use an Air Compressor For?
Air compressors can be used for many personal and professional applications. A few at-home uses include:
· Blowing up balloons
· Pumping up tires for bikes and vehicles
· Inflating pool accessories and air mattresses
· Refilling deflated sports equipment
· Pressure washing
· Powering tools for sanding, polishing and other types of crafting
· Painting with an airbrush or sprayer
Many businesses rely on air compressors to accomplish work safely and efficiently. Some industries that use compressors include:
· Agriculture
· Manufacturing
· Automobiles
· Pharmaceutical
· Food and beverage
· Dental and medical
· Construction
How Much Is an Air Compressor?
Air compressors can cost anywhere from $125 to $2,000. The price of an air compressor depends on many factors, including:
· PSI and CFM: Pounds per square inch (PSI) measures how much force an air compressor has, while cubic feet per minute (CFM) measures the flow.
· Duty cycle: This percentage indicates how long the compressor can provide air during a cycle.
· Life span: Compressors can last between 15,000 to 60,000 hours, depending on their use and size.
The type of compressor you need and how much you will pay for it will depend on your industry or personal needs.
How Often Do I Need to Change the Oil in My Air Compressor?
If you have a lubricated reciprocating, rotary screw or rotary vane air compressor, you’ll need to change the oil from time to time to keep it working properly. The recommended schedule is generally 3 months, subject to the manufacturer’s recommendation. For a rotary screw compressor, you’ll want to change the oil every 4,000 to 8,000 hours depending on the type of oil employed.
Do Air Compressors Run Out of Air?
If you run a regular duty cycle with an appropriate load, you will always have the air you need. As you use your tool, the pressure switch will detect the drop in pressure and start the compressor. Once the tank has refilled to the preselected pressure point, the compressor will shut off. The pressure switch will manage this function throughout the time you’re using an air tool.
If you attach a tool with an air requirement that is too great for the tank, you run the risk of emptying your air tank and having to wait for the compressor to refill it to a usable level. Always check your air compressor’s capabilities and your tool’s required pressure before connecting them.
Do I Need an Air Dryer in Addition to My Air Compressor?
It’s often a good value for you to add an air dryer to your air compressor system, as your air compressor can put a great deal of water into the compressed air system. Your air dryer could potentially remove gallons of water each day.
How Do I Control Contaminants in My Compressed Air System?
It’s important to have an effective air filtration system to keep your compressed air clean. CHINAMFG systems can provide you with all the air filters you need to help keep your compressed air clean.
How Often Do I Need to Replace My Air Intake Filter?
Air compressors with air intake filters need to be cleaned weekly. If your filter has built up so much debris that you can’t get it completely clean, or the filter is torn, you should replace it right away.
How Do I Control the Dew Point of My Compressed Air System?
If you’re worried about hitting the dew point, a quality air dryer should be the solution.
What Is the Correct Voltage for My Air Compressor?
Usually, 110 volts is sufficient for a small compressor. Larger compressors may take as much as 460 volts.
How Do I Drain the Water From My Tank?
You can drain your tank water manually or purchase an automatic drain valve to remove the water automatically. If water is becoming a big problem, consider investing in a more appropriately-sized air dryer.
What Is the Right Type of Hose for My Air Compressor?
It depends on the air compressor, but typically, they take a 1/4″ or 3/8″ hose. Your Geso systems professional can help you match the right hose to your compressor.
Do I Need a Reciprocating Compressor or a Rotary Screw Compressor?
For most applications, a reciprocating compressor is sufficient. If you need a compressor that runs continuously day and night, you need a rotary screw compressor.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Screw |
| Samples: |
US$ 5500/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
What are the environmental considerations when using air compressors?
When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:
Energy Efficiency:
Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.
Air Leakage:
Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.
Noise Pollution:
Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.
Emissions:
While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.
Proper Waste Management:
Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.
Sustainable Practices:
Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.
By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2024-02-14
China wholesaler Low Noise Oil Free Screw Type Air Compressors for Medical Industry / Oxygen air compressor repair near me
Product Description
Low Noise Oil Free Screw Type Air Compressors for Medical Industry / Oxygen
The ETC oil-free conversion technology opens up completely new possibilities for providing oil free compressed air in meeting with ISO 8573-1 Class 0 quality standard.
When it comes to holding down up-front operational costs, converter technology is ideally suited for the provision of entirely oil free compressed air. And it is dependable too: Penetration of oil into the compressed air network is absolutely impossible!
Operating costs are extremely low because no costly checkups are required. Commonly occurring risks such as oil penetration have been discarded, and frequent replacement of component elements as with filters has been completely eliminated.
Features of CHINAMFG ETC Series Oil Free Rotary Screw Air Compressor
1. Air quality to ISO8573-1 Class 0 standard with TUV certificate on request
2. Proven Eco-Tec Oil Free Converter technology from Germany and over thousands successful installation reference CHINAMFG
3. Single stage airend design for easy and cost saving maintenance
4. T. E. F. C. IP55 class F electric motor in compliance with IEC/DIN standards
5. Modern concept suction valve with energy saving modulation control as option
6. Intelligent PLC control panel with sequential / remote control functions
7. Reliable automatic control box with “Siemens” contactors
8. High efficiency aftercooler (air- or water- cooled available)
Proper disposal is no problem either as a matter of fact, in terms of oil content the condensate is of drinking water quality! In the ETC converter the long hydrocarbon chains of the residual oil contained in the compressed air are broken up into harmless carbon dioxide and water, i.e. substances occurring naturally in the air.
The catalytic converter incorporates a container with compact granulated pellets through which the compressed air circulates. This process breaks down and converts both oil droplets and oil vapors. The condensate that forms afterwards is therefore completely oil free and can be disposed of much less expensively and without the need for additional treatment.
Oil/hydrogen concentration is below 0,0571 mg/m3. The addition of the catalytic converter guarantees class 1 compressed air (ISO 8573-1) for all applications where oil free compressed air is essential.
ADEKOM (ASIA PACIFIC) LIMITED founded in the late 90’s is a specialized air/gas compressors and treatment system manufacturer with headquarter in Hong Kong. Its partners located in Vicenza, Italy and Germering, Germany are the world’s leading manufacturers with global recognition and experience in designing, manufacturing and marketing of rotary screw air/gas compressors for decades. QUALITY, RELIABILITY and ENERGY EFFICIENCY have been the main objectives of serving customers all over the world. CHINAMFG follows the company core of its European partners, is committed to the research & development, quality assurance and satisfaction of customers’ needs. Today, what CHINAMFG can do is not just to supply the best products to the market, but to provide THE TOTAL SOLUTION TO YOUR NEEDS!
CONTACT US
Asia Pacific Market: Spencer Lau (Ms.)
European/ Middle Eastern/ African Market: Echo Lok (Ms.)
American Market: Alice Kwok (Ms.)
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Yes |
|---|---|
| Warranty: | 12 Months |
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Angular |
| Customization: |
Available
|
|
|---|
.webp)
What Are the Safety Considerations When Using Water-Lubricated Compressors?
When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:
- Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
- Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
- Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
- Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
- Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
- Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.
It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.
.webp)
How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?
Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:
Positive Effects:
- Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
- Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
- Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.
Negative Effects:
- Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
- Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
- System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.
Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.
.webp)
How Do Water-Lubricated Air Compressors Compare to Oil-Lubricated Ones?
Water-lubricated air compressors and oil-lubricated air compressors have distinct differences in terms of lubrication method, performance, maintenance, and environmental impact. Here is a detailed comparison between the two:
| Water-Lubricated Air Compressors | Oil-Lubricated Air Compressors | |
|---|---|---|
| Lubrication Method | Water is used as the lubricant in water-lubricated compressors. It provides lubrication and heat dissipation. | Oil is used as the lubricant in oil-lubricated compressors. It provides lubrication, sealing, and heat dissipation. |
| Performance | Water lubrication offers efficient heat dissipation and cooling properties. It can effectively remove heat generated during compressor operation, preventing overheating and prolonging the compressor’s lifespan. Water lubrication can be suitable for applications where high heat generation is a concern. | Oil lubrication provides excellent lubrication properties, ensuring smooth operation and reduced friction. It offers good sealing capabilities, preventing air leakage. Oil-lubricated compressors are often preferred for heavy-duty applications that require high pressure and continuous operation. |
| Maintenance | Water lubrication generally requires less maintenance compared to oil lubrication. Water does not leave sticky residues or deposits, simplifying the cleaning process and reducing the frequency of lubricant changes. However, water lubrication may require additional measures to prevent corrosion and ensure proper water quality. | Oil lubrication typically requires more maintenance. Regular oil changes, filter replacements, and monitoring of oil levels are necessary. Contaminants, such as dirt or moisture, can adversely affect oil lubrication and require more frequent maintenance tasks. |
| Environmental Impact | Water lubrication is more environmentally friendly compared to oil lubrication. Water is non-toxic, biodegradable, and does not contribute to air or water pollution. It has a lower environmental impact and reduces the risk of contamination in case of leaks or spills. | Oil lubrication can have environmental implications. Oil leaks or spills can contaminate the environment, including air, soil, and water sources. Used oil disposal requires proper handling to prevent pollution. Oil-lubricated compressors also release volatile organic compounds (VOCs) into the air, contributing to air pollution. |
In summary, water-lubricated air compressors excel in efficient heat dissipation, require less maintenance, and have a lower environmental impact. On the other hand, oil-lubricated air compressors offer excellent lubrication properties and are suitable for heavy-duty applications. The choice between water and oil lubrication depends on specific requirements, operating conditions, and environmental considerations.


editor by CX 2024-02-14
China manufacturer 25bar High Pressure Diesel Screw Air Compressor for Weter Well Drilling Rig air compressor CHINAMFG freight
Product Description
1059CFM, 25Bar High Pressure Diesel Screw Air Compressor for Drilling Rig
Product Description:
Portable Screw Diesel Air Compressor widely applied to hydropower, railway, ship repairing, mining, highway, spray, oil and gas field, water well drilling rig, municipal construction, etc.
Details Feature for Well Drilling High Pressure Portable Air Compressor 25bar
1. Most advanced air end:Famous Air Eend.
2. CHINAMFG Engine .
3. Wide open gull-wing door:
4. MANN Brand Air filter,oil filter,air-oil separator,three stage air filter ensure the air clean.
5. Electricity and pannel instrument system:
6. Solid undercarriage
7. High efficient & economic adjustment system.
8. Compact structure design,anti-corrosion,and light-weight.
Specification for 1059CFM, 25Bar High Pressure Diesel Screw Air Compressor for Drilling Rig
| Compressor | Model No | HGS30-25C |
| Capacity(m3/min) | 30 | |
| Discharge Pressure(Bar) | 25 | |
| Compressed Class | Two Stage | |
| Tank Capacity(L) | 210 | |
| Screw Oil Capacity(L) | 137 | |
| Engine | Engine Model | QSZ8.9-C360 |
| Cylinder No. | 6 | |
| Rotate Power(Kw) | 264 | |
| Maximum Speed(rpm) | 1900 | |
| Minimum Speed(rpm) | 1400 | |
| Lubricating Oil Capacity(L) | 30 | |
| Coolant Capacity(L) | 70 | |
| Fuel Capacity(L) | 450 | |
| Whole Machine | Joint Dimension | 1-G2″, 1-G1″ |
| Size(L*W*H) | 3480*1960*1950 | |
| Weight(Kg) | 5100 | |
| Wheel No. | 4 |
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | Diesel Engine |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What are the advantages of using an air compressor in construction?
Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:
- Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
- Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
- Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
- Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
- Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
- Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
- Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.
It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.
In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
- Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
- Verify that the compressor’s power switch or control panel is turned on.
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
- Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
- Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
- Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
- Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
- Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
- Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
- Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
- Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
- Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
- Verify that the compressor is not being operated in an excessively hot environment.
- Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
- Consider using a thermal overload protector to prevent the motor from overheating.
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
What maintenance is required for air compressors?
Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:
1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.
2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.
3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.
4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.
5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.
6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.
7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.
8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.
9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.
10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.
Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.


editor by CX 2024-02-13
China manufacturer Air Compressor with Ghh or CHINAMFG Air End 7.5kw Air Compressor for Stationary Silent Screw Industrial air compressor lowes
Product Description
Air Compressor With GHH or CHINAMFG Air End 7.5KW Air Compressor For Stationary Silent Screw Industrial
New generation of high-efficient imported airend
1.The most advanced spiral tooth type technology
2.New-type 5:6 asymmetrical tooth type
3.German CHINAMFG with large rotator and low rotation speed
4.Adopt top-level quality CHINAMFG taper-roller bearing imported with original packaging from Sweden
5.Relative power increase by more than 5%-10%in gas discharge when compared with that of ordinary machine model
| Model | WZS-10AVF |
| Air Flow/Working pressure | 1.0m3/min @ 8.5bar |
| 0.8m3/min @ 10.5bar | |
| Cooling type of COMPRESSOR | Air cooling |
| Cooling type of MOTOR | Oil cooling |
| Driven method | Integrated connection |
| Start way | Soft VSD Start |
| VSD inverter | INOVANCE / HOLIP / VEICHI |
| Exhaust Temp. | < ambient temp. +8 degrees |
| Oil content | <2ppm |
| Noise | 60±2 dB(A) |
| Power | 380VAC/3ph/0~200Hz |
| Motor power | 7.5kw/10hp |
| Dimension | 1000*600*1000mm |
| Weight | 280kg |
Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)
2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
High Efficiency PM Motor and Energy Saving
*With the high-performance permanent magnet material, PM motor won’t lose magnetism even under 120°c and can run for more than 15 years.
*No motor bearing: permanent magnet rotors is installed directly on the stretch out shaft of Male rotor. This structure doesn’t have the bearing and eliminates the motor bearing fault.
*Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency.
SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.
FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.
Q: Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity
Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.
Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspect completely goods before shipping.
Q: If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.
Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory
Thank you very much for viewing this page, and wish you a nice day!
Contacts: Vicky Liu
Mob: 173-1655-1856
Web: compressor
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Oil-less |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What role do air dryers play in compressed air systems?
Air dryers play a crucial role in compressed air systems by removing moisture and contaminants from the compressed air. Compressed air, when generated, contains water vapor from the ambient air, which can condense and cause issues in the system and end-use applications. Here’s an overview of the role air dryers play in compressed air systems:
1. Moisture Removal:
Air dryers are primarily responsible for removing moisture from the compressed air. Moisture in compressed air can lead to problems such as corrosion in the system, damage to pneumatic tools and equipment, and compromised product quality in manufacturing processes. Air dryers utilize various techniques, such as refrigeration, adsorption, or membrane separation, to reduce the dew point of the compressed air and eliminate moisture.
2. Contaminant Removal:
In addition to moisture, compressed air can also contain contaminants like oil, dirt, and particles. Air dryers help in removing these contaminants to ensure clean and high-quality compressed air. Depending on the type of air dryer, additional filtration mechanisms may be incorporated to enhance the removal of oil, particulates, and other impurities from the compressed air stream.
3. Protection of Equipment and Processes:
By removing moisture and contaminants, air dryers help protect the downstream equipment and processes that rely on compressed air. Moisture and contaminants can negatively impact the performance, reliability, and lifespan of pneumatic tools, machinery, and instrumentation. Air dryers ensure that the compressed air supplied to these components is clean, dry, and free from harmful substances, minimizing the risk of damage and operational issues.
4. Improved Productivity and Efficiency:
Utilizing air dryers in compressed air systems can lead to improved productivity and efficiency. Dry and clean compressed air reduces the likelihood of equipment failures, downtime, and maintenance requirements. It also prevents issues such as clogging of air lines, malfunctioning of pneumatic components, and inconsistent performance of processes. By maintaining the quality of compressed air, air dryers contribute to uninterrupted operations, optimized productivity, and cost savings.
5. Compliance with Standards and Specifications:
Many industries and applications have specific standards and specifications for the quality of compressed air. Air dryers play a vital role in meeting these requirements by ensuring that the compressed air meets the desired quality standards. This is particularly important in industries such as food and beverage, pharmaceuticals, electronics, and automotive, where clean and dry compressed air is essential for product integrity, safety, and regulatory compliance.
By incorporating air dryers into compressed air systems, users can effectively control moisture and contaminants, protect equipment and processes, enhance productivity, and meet the necessary quality standards for their specific applications.
.webp)
Can air compressors be integrated into automated systems?
Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:
Pneumatic Automation:
Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.
Control and Regulation:
In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.
Sequential Operations:
Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.
Energy Efficiency:
Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.
Monitoring and Diagnostics:
Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.
When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.
In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.
.webp)
Are there portable air compressors available for home use?
Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:
1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.
2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.
3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.
4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.
5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.
6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.
7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.
When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.
Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.


editor by CX 2024-02-13