Product Description
Product Description
In response to market requirements, CHINAMFG company has launched oil-free screw air compressors, which are classified into oil-free piston machines, oil-free water-lubricated screw air compressors, and dry oil-free air compressors. There are many products. Welcome to consult.
Our advantages
1. Imported top-grade main machine, as the third generation product of state-of -the art brand the world, with asymmetrical 5:6 tooth rotor, is provided with outstanding performance and high efficiency far beyond other similar-type brand.
2. Full-intellectual control system and LCD screen, with self-diagnosis and protection devices, remote control and multi-host interlocking control, realizing unattended and high-tech operation.
3. Y series three-phase asynchronous motor special for compressor, imported World famous brand bearing, F-level insulation, IP54 especially suitable for long-term use, safe and reliable.
4 .Imported oil filter, oil gas separation filter element, ternary separation, ensure oil content less than 0.001ppm, the trunk adopts metal pipe, safe for long -term operation without leakage or deformation, the V type drive belt is imported from Germany, and has a service life more than10000hous.
5.Air volume auto intelligent control, auto shutdown after over long idle run, ensure over 25% of energy saving.
6.Valve-free oil system design, achieving a safer and more reliable operation of the whole machine, main machine adopts imported special compressor oil, reducing leakage inside and outside the compressor, improving efficiency of main machine and prolonging service life.
Product Parameters
| Water lubricated 100% oil-free air compressor Compresor de aire 100% exento de aceite lubricado con agua |
||||||||||
| Model Modelo |
Working Pressure | Air Delivery | Motor Power | Dimension(mm) | Weight(kg) | Output pipe Diameter | ||||
| psig | bar | cfm | m3/min | kw/hp | L | W | H | |||
| ZW-7A | 100 | 7 | 38.8 | 1.1 | 7.5/10 | 1300 | 800 | 1300 | 500 | 3/4″ |
| 116 | 8 | 35.3 | 1 | |||||||
| 145 | 10 | 30 | 0.85 | |||||||
| 181 | 12.5 | 24.7 | 0.7 | |||||||
| ZW-11A | 100 | 7 | 63.6 | 1.8 | 11/15/ | 1300 | 800 | 1300 | 540 | 1″ |
| 116 | 8 | 58.3 | 1.65 | |||||||
| 145 | 10 | 53 | 1.5 | |||||||
| 181 | 12.5 | 45.9 | 1.3 | |||||||
| ZW-15A | 100 | 7 | 84.7 | 2.4 | 15/20 | 1620 | 1004 | 1410 | 650 | 1″ |
| 116 | 8 | 77.7 | 2.2 | |||||||
| 145 | 10 | 74.2 | 2.1 | |||||||
| 181 | 12.5 | 63.6 | 1.8 | |||||||
| ZW-18A | 100 | 7 | 109.5 | 3.1 | 18.5/25 | 1600 | 910 | 1350 | 840 | 1″ |
| 116 | 8 | 102.4 | 2.9 | |||||||
| 145 | 10 | 95.3 | 2.7 | |||||||
| 181 | 12.5 | 81.2 | 2.3 | |||||||
| ZW-22A | 100 | 7 | 134.2 | 3.8 | 22/30 | 1450 | 1000 | 1560 | 870 | 1″ |
| 116 | 8 | 127.1 | 3.6 | |||||||
| 145 | 10 | 113 | 3.2 | |||||||
| 181 | 12.5 | 88.3 | 2.5 | |||||||
| ZW-30A | 100 | 7 | 187.1 | 5.3 | 30/40 | 1950 | 1050 | 1432 | 980 | 11/4″ |
| 116 | 8 | 176.6 | 5 | |||||||
| 145 | 10 | 151.8 | 4.3 | |||||||
| 181 | 12.5 | 127.1 | 3.6 | |||||||
| ZW-37A | 100 | 7 | 233 | 6.6 | 37/50 | 1700 | 1100 | 1630 | 1000 | 11/4″ |
| 116 | 8 | 218.9 | 6.2 | |||||||
| 145 | 10 | 201.3 | 5.7 | |||||||
| 181 | 12.5 | 162.4 | 4.6 | |||||||
| ZW-45A | 100 | 7 | 282.5 | 8 | 45/60 | 2150 | 1300 | 1590 | 1060 | 11/2″ |
| 116 | 8 | 271.9 | 7.7 | |||||||
| 145 | 10 | 243.6 | 6.9 | |||||||
| 181 | 12.5 | 211.9 | 6 | |||||||
| ZW-55A | 100 | 7 | 370.8 | 10.5 | 55/75 | 2200 | 1400 | 1540 | 1250 | 2″ |
| 116 | 8 | 346 | 9.8 | |||||||
| 145 | 10 | 307.2 | 8.7 | |||||||
| 181 | 12.5 | 257.8 | 7.3 | |||||||
| ZW-75A | 100 | 7 | 480.2 | 13.6 | 75/100 | 2400 | 1450 | 1740 | 1480 | 2″ |
| 116 | 8 | 459 | 13 | |||||||
| 145 | 10 | 409.6 | 11.6 | |||||||
| ZW-90A | 100 | 7 | 572 | 16.2 | 90/120 | 2550 | 1400 | 1605 | 2030 | DN50 |
| 116 | 8 | 547.3 | 15.5 | |||||||
| 145 | 10 | 494.3 | 14 | |||||||
Detailed Photos
| Brief Introduction of screw air compressor: | |
| Air end | Germany Technology. 30 Years Designed Lifetime |
| Motor Efficiency Class | Ultraefficient/IE3/IE4 as per your required |
| Motor Protection Class | IP23/IP54/IP55 or as per your required (100% rare earth permanent magnet motor) |
| Inverter | Chinese No. 1 Inverter or Denmark Inverter Can Save 30% Energy |
| Warranty | 5 Years for The Air End, and 2 Years for The Whole |
| Voltage | 380V/3PH/50HZ/60HZ, 220V/3PH/50HZ/60HZ, 400V/3PH/50HZ/60HZ, 440V/3PH/50HZ/60HZ, 415V/3PH/50HZ/60HZ, 230V/3PH/50HZ/60HZ, 220V/1PH/60HZ/ dual voltage is also ok |
| Delivery time | 7-15 days |
| Certificate | CE/SGS/ISO9001/ASME |
| After-sales service | we have our professional after-sales technician to instruct the installation of the whole screw air compressor |
Main configuration
1 Motor- Germany
2 screw(air end)- Germany
3 Oil filter- Germany
4 Solenoid valve- Japan
5 Combination valve- Austria
6 AC contactor- Germany
7 Gas cooler- HangZhou, China
8 Oil cooler- HangZhou, China
9 Pressure controller- Japan
We offer free pipe and valves for installation and installation diagram
Company Profile
Brief introduction of factory:
1. our factory was established in 1985 which is specilized in manufacturing various types of air compressor and accessories.
2. our factory accept OEM air compressor power from 5.5kw to 315kw, 5hp to 355hp ;
3. Our products are exported to 132 countries and regions around the world;
4. Our air compressor provides a 5-year warranty.
If you have specific parameters and requirements for our Rotary Screw Type Air Compressor, customization is available
Promises Every Machine Will Run Well More Than 15 years
Recommended Products
CHINAMFG provides customers with one-stop purchasing to meet any customer needs.
In addition to variable frequency air compressors, direct driven screw air compressors, integrated air compressors, oil-free screw air compressors, we also have dryers and air receiver tank and other post-processing equipment.
Is a professional air treatment expert;)
Customer feedback
1.we have 30+ years professinal experience to producation and service,
2. not only give you air compressor, also support air compressor system solution ,
3. 1 to 1 service help you solve question quickly.
After Sales Service
1. Reply in 24 hours.
2. Providing professional solutions.
3. Every product will be tested before the delivery.
4. Delivery on time and excellent after-sales service.
5. High quality, reliable price.
Shipment :
FAQ
1: Are you factory or trade company?
A1: We are factory.
Q2: What the exactly address of your factory?
A2: Our Factory is Located in HangZhou City, ZheJiang Province, China.
Q3: Will you provide spare parts of your products?
A3: Yes, We provide all parts to customer, so you can do repair or maintenance without trouble.
Q4: Can you accept OEM orders?
A4: Yes, with professional design team, OEM orders are highly welcome.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products.380V 50HZ we can delivery the goods within 3-15 days. Other voltage or other color we will delivery within 25-30 days.
Q6: Warranty terms of your machine?
A6: Two years warranty for the machine and technical support always according to your needs.
Q7: Can you provide the best price?
A7:According to your order, we will provide you the best price.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Support Online and Local Service |
|---|---|
| Warranty: | 2 Year for The Screw and 1 Year for The Whole Mach |
| Lubrication Style: | Lubricated |
| Cooling System: | No |
| Power Source: | AC Power |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|
.webp)
How Do Water-Lubricated Air Compressors Impact Compressed Air Quality?
Water-lubricated air compressors can have an impact on the quality of the compressed air they produce. Here’s a detailed explanation of how water-lubricated air compressors can affect compressed air quality:
Moisture Content:
- Condensation: Water-lubricated compressors introduce moisture into the compressed air system. During the compression process, as the air cools downstream, moisture can condense and accumulate. This moisture can lead to issues such as corrosion, rust, and contamination of downstream equipment or processes.
- Water Carryover: If the compressor’s water separation mechanisms are not efficient or if there are malfunctions in the water removal systems, water droplets or mist may carry over into the compressed air. This can negatively impact the quality of the compressed air and introduce moisture-related issues downstream.
Contamination:
- Oil Contamination: In some water-lubricated compressors, there is a potential for oil to mix with the water used for lubrication. If oil and water emulsify or if there are leaks in the compressor system, oil contamination may occur. Oil-contaminated compressed air can have adverse effects on downstream processes, equipment, and products. It can lead to contamination, reduced performance of pneumatic components, and potential health and safety concerns.
- Particulate Contamination: Water-lubricated compressors can introduce particulate matter, such as sediment, debris, or rust, into the compressed air system. This can occur if the water supply or water treatment systems are not adequately filtered or maintained. Particulate contamination can clog or damage pneumatic equipment, affect product quality, and cause operational issues in downstream applications.
Preventive Measures:
- Water Separation: Water-lubricated compressors employ various water separation mechanisms to remove moisture from the compressed air. This includes moisture separators, water traps, or coalescing filters that are specifically designed to capture and remove water droplets or mist from the compressed air stream. Regular maintenance and inspection of these separation systems are necessary to ensure their proper functioning.
- Air Treatment: Additional air treatment components, such as air dryers or desiccant systems, can be installed downstream of water-lubricated compressors to further reduce moisture content in the compressed air. These systems help to remove moisture that may have carried over from the compressor and ensure that the compressed air meets the required dryness standards for specific applications.
- Proper Maintenance: Regular maintenance of water-lubricated compressors is essential to minimize the potential impact on compressed air quality. This includes routine inspection, cleaning, and replacement of filters, lubrication systems, and water separation components. Addressing any leaks, malfunctioning components, or system issues promptly can help maintain the integrity of the compressed air and prevent contamination or excessive moisture levels.
By implementing appropriate water separation mechanisms, air treatment systems, and maintenance practices, the impact of water-lubricated air compressors on compressed air quality can be minimized. It is important to consider the specific requirements of the application and follow industry standards and guidelines to ensure the desired compressed air quality is achieved.
.webp)
How Are Water-Lubricated Air Compressors Used in Automotive Applications?
Water-lubricated air compressors find various applications in the automotive industry. Here’s a detailed explanation of how they are used in automotive applications:
Tire Inflation:
- Service Stations: Water-lubricated air compressors are commonly used in automotive service stations for tire inflation. They provide a reliable source of compressed air for quickly and efficiently inflating tires to the recommended pressure. The water lubrication system in these compressors helps to reduce friction and wear on internal components, ensuring smooth operation and extended lifespan.
- Tire Shops: Tire shops often utilize water-lubricated air compressors as part of their tire service equipment. These compressors can supply compressed air for tire inflation, tire mounting and demounting machines, and other pneumatic tools used in tire service and maintenance.
Painting and Finishing:
- Spray Painting: Water-lubricated air compressors are also used in automotive painting and finishing processes. Compressed air is used to power spray guns that apply paint or coatings to vehicles during the painting process. The water lubrication system helps maintain the cleanliness of the compressor and prevents oil contamination, ensuring high-quality paint finishes.
- Sanding and Polishing: Compressed air is often used for sanding and polishing automotive surfaces. Water-lubricated air compressors provide a reliable source of compressed air for pneumatic sanders, polishers, and other air-powered tools used in automotive surface preparation and refinishing.
Brake and Suspension Systems:
- Brake Bleeding: Water-lubricated air compressors can be used during brake bleeding procedures in automotive repair and maintenance. Compressed air is used to purge air bubbles from the brake system, ensuring optimal brake performance and pedal feel. The water lubrication system helps maintain the purity of the compressed air, preventing contamination that could affect the brake system’s functionality.
- Suspension Systems: Air suspension systems in vehicles often rely on compressed air for operation. Water-lubricated air compressors provide a continuous supply of clean and lubricated compressed air for inflating and maintaining the air springs or airbags used in vehicle suspensions.
Diagnostic and Testing Equipment:
- Diagnostic Tools: Water-lubricated air compressors are utilized in automotive diagnostic and testing equipment. Compressed air is used to operate pneumatic diagnostic tools, such as vacuum testers, pressure gauges, and leak detectors, that help diagnose and troubleshoot various vehicle systems.
- Testing and Calibration: Automotive testing and calibration equipment, such as dynamometers and emission testing devices, often require a source of compressed air. Water-lubricated air compressors supply the necessary compressed air for precise and accurate testing of vehicle performance, emissions, and other parameters.
Overall, water-lubricated air compressors play a significant role in various automotive applications, including tire inflation, painting and finishing, brake and suspension systems, and diagnostic and testing equipment. Their use helps ensure efficient and reliable operation, improved productivity, and high-quality results in automotive service, repair, and manufacturing processes.
.webp)
How Is Water Quality Crucial for the Performance of These Compressors?
Water quality plays a crucial role in the performance of water-lubricated air compressors. The quality of the water used for lubrication directly impacts the efficiency, reliability, and lifespan of these compressors. Here are the key reasons why water quality is essential for optimal compressor performance:
- Lubrication effectiveness: Water serves as the lubricant in water-lubricated air compressors. The water forms a protective film between moving parts, reducing friction and wear. However, if the water contains impurities or contaminants, it can compromise the lubricating properties. Impurities like minerals, sediments, or dissolved solids can hinder the formation of an effective lubricating film, leading to increased friction and potential damage to the compressor components.
- Corrosion prevention: Water with high mineral content, such as hard water, can promote corrosion within the compressor system. Minerals like calcium and magnesium can react with metal surfaces, leading to rust, scale formation, and degradation of internal components. Corrosion compromises the structural integrity of the compressor, reduces its efficiency, and may result in costly repairs or even premature failure.
- Preventing blockages: Poor water quality can result in the accumulation of sediments, debris, or contaminants within the compressor system. These deposits can block water passages, filters, or valves, impeding the flow of water and affecting the overall performance of the compressor. Restricted water flow may lead to inadequate cooling, reduced lubrication, and compromised efficiency.
- Preventing fouling and fouling-related issues: Fouling refers to the accumulation of organic or inorganic deposits on heat transfer surfaces, such as heat exchangers or radiators, within the compressor system. Poor water quality can contribute to fouling, reducing heat transfer efficiency and impairing the cooling capacity of the compressor. This can result in elevated operating temperatures, decreased performance, and potential damage to the compressor.
- System cleanliness: Clean water is crucial for maintaining a clean and sanitary compressor system, especially in industries like food and beverage or medical applications. Contaminated water can introduce harmful bacteria, microorganisms, or particles into the compressor, posing a risk to product quality, safety, or patient well-being.
To ensure optimal performance and longevity of water-lubricated air compressors, it is important to monitor and maintain the quality of the water used for lubrication. Regular water analysis, proper filtration, and appropriate water treatment measures should be employed to remove impurities, control mineral content, and maintain the desired water quality. By ensuring clean and high-quality water, the compressor can operate efficiently, minimize the risk of component damage, and contribute to a reliable and safe compressed air system.


editor by CX 2023-12-26
China Good quality 220V AC Power Oil Free Silent Cylinder Piston Air Compressor air compressor CHINAMFG freight
Product Description
Product Description
Features of the products
Small size, light weight, large exhaust volume, clean gas without oil, easy to install.
Purposes of the products
Can be used to transport cement, grain, lime, plastic, feed and other granular materials and powder materials tank truck, tank ship; It can also be used as an air power source for gas delivery devices.
| Machine type | HYCW-10/2 Single Cylinder (cast iron model) | |
| item | unit | Parameter value |
| Air displacement | m3 / min | 10 |
| Exhaust pressure | MPa | 0.2 |
| Shaft power | KW | ≤35 |
| Specific power | KW / m3 . min -1 | 3.5 |
| Inspiratory temperature | ºC | ≤40 |
| Exhaust temperature | ºC | ≤160 |
| Lubricating oil temperature | ºC | 65 |
| cleanliness | Mg | 720 |
| noise | Db ( A ) | 70 |
| weight | KG | 225 |
| Rotational speed | r / min | 980 |
| torque | N . M | 341 |
| Overall dimension | mm (Length * width * height) | 976.5 * 620 * 760 |
| Installation position | Seated mounting | |
Hot Products
Company Profile
The products cover 31 provinces of china, cities and autonomous regions, and export to more than 50 countries and regions.
Packaging & Shipping
FAQ
Q1.Dose your company has your own factory?
A:Yes,we have a factory ourself.which is in this business for 15 years in China.
Our factory is in the trailer base LiangShan,ZheJiang ,China.
Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.
Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.
Q4. How about your delivery time?
A: Generally, it will take 30 to 60 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.
Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.
Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ; 2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
| After-sales Service: | 7*24 Hours |
|---|---|
| Warranty: | 6 Months |
| Weight: | 210kg |
| Noise: | 70dB(a) |
| Lubricating Oil Temperature: | 65ºC |
| Exhaust Temperature: | <=160ºC |
| Customization: |
Available
|
|
|---|
.webp)
What Is the Role of Water Separators in Water-Lubricated Compressors?
In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:
Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.
The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:
- Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
- Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
- Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
- Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.
By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.
It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.
.webp)
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2023-12-13
China Standard New Technology Price DC Power Refrigerated Screw Mini Airbrush Air Compressor with Good quality
Product Description
Shipping
1.If the quantity of order is not very big,we could send them to you by express delivery,such as TNT,DHL,UPS or EMS etc.
2.If order is big,we will advise you use Air shipping or sea shipping through your nomiated forwarder agent .Our long -term cooperated agent also availabe.
Our products
Our advantages:
1. Low noise and low vibration
2. CHINAMFG compressors have a CHINAMFG cast iron body to provide a large heat dissipation area to improve the cooling effect of the compressor, and use light-weight Lu pistons to reduce friction and vibration, and have a cutting-edge electronic protective film to provide comprehensive motor protection.
Product Features
Excellent Low temperature performance ,high efficiency and energy saving (high volumetric efficiency):In medium and low temperature applications.the volumetric efficiency is more than 30% higher than that of traditional piston machines.
Smooth operation ,Low noise and vibration,reducing the impact on the environment.the scroll compressor has a novel and precise structure,and has the advantages of small size,low noise,light weight ,small vibration,low energy consumption,long life ,continuous and stable gas transmission, reliabel operation,and clean gas source,etc.
the unique design of the scroll compressor makes it on energy-saving compressor in the world today.the main operating part of the scroll compressor is the scroll.which is only dirty and has no wear,so it has a long life,and is known as a maintenance -free compressor.
Technical Datas
| Model | Power (HP) | Exhaust cpacity M3/h | Air condition(7.2/54.4C) | Weight( Kg) | Height (mm) | |
| Refrigeration | Input power (W) | |||||
| Capacity( W) | ||||||
| Single phase | ||||||
| ZR16K3-PFJ | 1.33 | 3.97 | 4571 | 1320 | 25.9 | 370.4 |
| ZR18K3-PFJ | 1.5 | 4.37 | 4400 | 1440 | 25.9 | 370.4 |
| ZR20K3-PFJ | 1.69 | 4.76 | 4890 | 1600 | 25.9 | 370.4 |
| ZR22K3-PFJ | 1.83 | 5.34 | 5330 | 1730 | 25.9 | 382.8 |
| ZR24K3-PFJ | 2 | 5.92 | 5920 | 1870 | 26.3 | 382.8 |
| ZR26K3-PFJ | 2.17 | 6.27 | 6330 | 2000 | 25.9 | 382.8 |
| ZR28K3-PFJ | 2.33 | 6.83 | 6910 | 2150 | 27.2 | 382.8 |
| ZR30K3-PFJ | 2.5 | 7.3 | 7380 | 2290 | 28.5 | 405.5 |
| ZR32K3-PFJ | 2.67 | 7.55 | 7760 | 2410 | 28.1 | 405.5 |
| ZR34K3-PFJ | 2.83 | 8.02 | 8200 | 2520 | 29.5 | 405.5 |
| ZR36K3-PFJ | 3 | 8.61 | 8790 | 2700 | 29.5 | 405.5 |
| ZR40K3-PFJ | 3.33 | 9.43 | 9670 | 2970 | 29.9 | 419.3 |
FAQ
1. Q: Are you a manufacturer?
A:A: Yes, we are manufacturer. Non-standard customization and OEM service are both welcomed and available.
2.Q: Can I get the warranty?
A: Yes, under the condition that the user apply the equipment correctly, we provide 1 year quality warranty.
3.Q: How to pay?
A: 30% of total amount to be paid before production, and the balance payment before shipment.
4.Q: How to ship?
A: We work with experienced shipping agent who could arrange your delivery on the cheapest and fastest way. Our closest port is HangZhou/ZheJiang .
5.Q: What about the delivery date?
A: 10-30 days, depends on the order.
6.Q: What about the maintenance?
A: All the products are tested before shipment, and maintenance is easy. We provide patient pre-sale service and considerate after-sale service.
7.Q: Do you have any Certificate?
A: Yes. we have ISO9001 certificate. If you need any other Certificate, we can help you to get it.
8.Q: Can I get guarantee of products?
A: Yes, every cold room is 10 years quality warrantee under customer correct using the products.
9.Q:How long is the lead time?
A:Usually for units we need 35 days to produce. If it is a special voltage of 60hz, the production time needs to be extended by 5-10 days. Panels and other things usually we need 7-20 days depends on amount.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Year |
| Installation Type: | Stationary Type |
| Lubrication Style: | Lubricated |
| Cylinder Position: | Vertical |
| Color: | Black |
| Customization: |
Available
|
|
|---|
.webp)
What is the impact of humidity on compressed air quality?
Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:
1. Corrosion:
High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.
2. Contaminant Carryover:
Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.
3. Decreased Efficiency of Pneumatic Systems:
Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.
4. Product Contamination:
In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.
5. Increased Maintenance Requirements:
Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.
6. Adverse Effects on Instrumentation:
Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.
To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.
.webp)
How are air compressors used in refrigeration and HVAC systems?
Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:
1. Refrigerant Compression:
In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.
2. Refrigeration Cycle:
The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.
3. HVAC Cooling and Heating:
In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.
4. Air Conditioning:
Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.
5. Compressor Types:
Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.
6. Energy Efficiency:
Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.
By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.
.webp)
How is air pressure measured in air compressors?
Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:
1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.
2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.
To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.
It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.
When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.
Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.


editor by CX 2023-11-17
China Professional Oil-free DC Power CHINAMFG Standard Export Packing parts screw air compressor with Best Sales
Product Description
Contact details:
Company name:HangZhou CHINAMFG Compressor Co.,Ltd
Company address:No.172,NanChe Road,Xihu (West Lake) Dis.cheng district,HangZhou city.
Website:http://compscompressor
Sales manager:Mr Rick
| After-sales Service: | 12 months |
|---|---|
| Warranty: | 12 months |
| Lubrication Style: | Oil-free |
| Cooling System: | Water Cooling |
| Power Source: | DC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
What Is the Role of Water Separators in Water-Lubricated Compressors?
In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:
Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.
The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:
- Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
- Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
- Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
- Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.
By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.
It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.
.webp)
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
.webp)
What Maintenance Is Required for Water-Lubricated Air Compressors?
Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:
- Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
- Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
- Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
- Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
- Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
- Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
- Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.
Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.


editor by CX 2023-11-13
China best Oil Free Direct Drive AC Power Oilless Screw Air Compressor For Sale with Best Sales
Product Description
Screw type air compressor structure of a unique design, a compact, stylish appearance, high efficiency, small energy consumption, low noise characteristics and long life, is a smart environment-friendly products. Widely applied in metallurgy, machinery, chemicals, and mining, and electric power industries of the ideal gas source equipment.
Advantage:
1.The third generation of advanced rotor and concise intake control system
2.Efficient centrifugal separator oil and gas, gas oil content is small,tube and core of long life .
3. Efficient, low noise suction fan of the full use of export dynamic pressure increased effect of heat transfer (air-cooled)
4. Automatic water-cooling system for large air compressor to provide more efficient
5.Fault diagnosis system, the control panel is easy to operate
6. Removable door, equipment maintenance, service convenient
7.Micro-electronic processing so that temperature, pressure and other parameters are closely monitored .
Technical Parameters:
| Model | Discharge Pressure | Discharge Air Volume | Motor Power | Noise | Dimension(mm) | Discharge Pipc.Dia | Unit Weight |
| DEF330W | 0.75MPa | 9.15m³/min | 55KW | 80±3 | 2100x1500x1790 | G1-1/2 | 2600KG |
| 0.85MPa | 9.11m³/min | ||||||
| 1.05MPa | 7.98m³/min | ||||||
| DEF450W | 0.75MPa | 12.51m³/min | 75KW | 80±3 | 2300x1600x1790 | DN50 | 2800KG |
| 0.85MPa | 11.60m³/min | ||||||
| 1.05MPa | 10.81m³/min | ||||||
| DEF505W | 0.75MPa | 13.39m³/min | 90KW | 80±3 | 2300x1600x1790 | DN50 | 3400KG |
| 0.85MPa | 13.37m³/min | ||||||
| 1.05MPa | 12.41m³/min | ||||||
| DEF710W | 0.75MPa | 19.96m³/min | 110KW | 82±3 | 2800x1800x1860 | DN65 | 3450KG |
| 0.85MPa | 18.74m³/min | ||||||
| 1.05MPa | 16.40m³/min | ||||||
| DEF780W | 0.75MPa | 23.58m³/min | 132KW | 82±3 | 2800x1800x1860 | DN65 | 3550KG |
| 0.85MPa | 22.13m³/min | ||||||
| 1.05MPa | 19.89m³/min | ||||||
| DEF950W | 0.75MPa | 26.85m³/min | 160KW | 82±3 | 2800x1800x1860 | DN65 | 3950KG |
| 0.85MPa | 25.47m³/min | ||||||
| 1.05MPa | 23.51m³/min | ||||||
| DEF1060W | 0.75MPa | 29.73m³/min | 185KW | 82±3 | 2800x1800x1860 | DN65 | 4500KG |
| 0.85MPa | 29.65m³/min | ||||||
| 1.05MPa | 26.79m³/min | ||||||
| DEF1180W | 0.75MPa | 33.49m³/min | 200KW | 85±3 | 3100x2150x2200 | DN100 | 5000KG |
| 0.85MPa | 33.35m³/min | ||||||
| 1.05MPa | 29.89m³/min | ||||||
| DEF1270W | 0.75MPa | 35.97m³/min | 220KW | 85±3 | 3100x2150x2200 | DN100 | 5200KG |
| 0.85MPa | 35.92m³/min | ||||||
| 1.05MPa | 33.28m³/min | ||||||
| DEF1510W | 0.75MPa | 42.85m³/min | 250KW | 85±3 | 3100x2150x2200 | DN100 | 6400KG |
| 0.85MPa | 42.66m³/min | ||||||
| 1.05MPa | 38.3m³/min | ||||||
| DEF1650W | 0.75MPa | 46.73m³/min | 280KW | 85±3 | 3400x2400x2200 | DN100 | 6400KG |
| 0.85MPa | 45.64m³/min | ||||||
| 1.05MPa | 42.61m³/min | ||||||
| DEF1815W | 0.75MPa | 51.41m³/min | 315KW | 90±3 | 3400x2400x2200 | DN100 | 6400KG |
| 0.85MPa | 51.25m³/min | ||||||
| 1.05MPa | 46.47m³/min | ||||||
| DEF2060W | 0.75MPa | 58.44m³/min | 355KW | 90±3 | 3400x2400x2200 | DN100 | 6400KG |
| 0.85MPa | 57.89m³/min | ||||||
| 1.05MPa | 50.99m³/min |
PRODUCT HIGHLIGHTS
1.Clean air 100% oil-free, class 0 oil free air according to ISO8537-1
2.Technology patent used in oil free compressed air system
3.Significant energy saving, environmental-friendly and pollution-free
4.Low operation and maintenance cost
5.Powerful MAM microcomputer controller and touch screen
6.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc.
Product Applications:
Our Exhibition
Our service
1.Pre-sale service:
Act as a good adviser and assistant of clients enable them to get rich and generous returns on their investments .
1.Select equipment model.
2.Design and manufacture products according to client’s special requirement ;
3.Train technical personnel for clients .
2.Services during the sale:
1.Pre-check and accept products ahead of delivery .
2. Help clients to draft solving plans .
3.After-sale services:
Provide considerate services to minimize clients’ worries.
1.Complete After-sales service,professional engineers available to service machinery at home or oversea.
2. 24 hours technical support by e-mail.
3.Other essential technological service.
| Lubrication Style: | Oil-free |
|---|---|
| Cooling System: | Water Cooling |
| Power Source: | DC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
What Industries Commonly Use Water-Lubricated Air Compressors?
Water-lubricated air compressors find applications in various industries where specific operating conditions or regulatory requirements make them a preferred choice. Here are some industries that commonly utilize water-lubricated air compressors:
- Food and Beverage: Water-lubricated compressors are often used in the food and beverage industry due to their ability to provide clean, oil-free compressed air. Compressed air is widely used in food processing and packaging applications, such as pneumatic conveying, product mixing, bottle blowing, and food packaging. Water-lubricated compressors help maintain product purity, prevent oil contamination, and comply with stringent food safety standards.
- Pharmaceutical and Healthcare: The pharmaceutical and healthcare industries have strict requirements for compressed air quality, especially in applications where compressed air comes into direct contact with pharmaceutical products or is used in critical medical equipment. Water-lubricated compressors offer a viable solution by providing lubrication without the risk of oil contamination. They are commonly used for processes such as air agitation, medical device manufacturing, and laboratory applications.
- Electronics and Semiconductors: In electronics and semiconductor manufacturing, where sensitive components and cleanroom environments are involved, oil-free compressed air is essential. Water-lubricated compressors can provide the required level of air purity without introducing oil particles or vapors that could contaminate the electronics or semiconductor production processes. They are used in applications such as chip manufacturing, circuit board assembly, and cleanroom air supply.
- Textile and Garment: Water-lubricated compressors are utilized in the textile and garment industry, where the presence of oil can negatively impact the quality and appearance of fabrics or garments. Compressed air is widely used in textile machinery for tasks such as spinning, weaving, and air jet looms. Water-lubricated compressors ensure oil-free air supply, preventing oil stains or contamination that could affect the final textile or garment products.
- Environmental and Wastewater Treatment: Water-lubricated compressors are also employed in environmental and wastewater treatment applications. These compressors help supply air for aeration processes in wastewater treatment plants, where air is introduced into the treatment tanks to facilitate the growth of beneficial bacteria for biological treatment. Water-lubricated compressors provide oil-free compressed air, ensuring the purity and effectiveness of the treatment process.
While the industries mentioned above commonly use water-lubricated air compressors, it is important to note that these compressors may also find applications in other sectors where oil-free, contamination-free compressed air is required for specific processes or environmental considerations.
.webp)
What Are the Considerations for Choosing Water-Lubricated vs. Oil-Lubricated Compressors?
When selecting between water-lubricated and oil-lubricated compressors, several considerations come into play. Here’s a detailed explanation of the key factors to consider when choosing between these two types:
Operating Environment:
- Water Sensitivity: Water-lubricated compressors are well-suited for environments where water is readily available and can be easily supplied to the compressor system. On the other hand, oil-lubricated compressors are more suitable for applications where water is not readily available or where water contamination could pose a problem.
- Cleanliness Requirements: If the application demands a high level of cleanliness, such as in certain manufacturing processes or cleanroom environments, water-lubricated compressors may be preferred. Water is inherently cleaner than oil and reduces the risk of oil contamination in sensitive operations.
Maintenance and Service:
- Lubricant Replacement: Oil-lubricated compressors require regular oil changes and maintenance to ensure proper lubrication and performance. Water-lubricated compressors, on the other hand, eliminate the need for oil changes and associated maintenance tasks, simplifying the maintenance requirements.
- Oil Contamination: Oil-lubricated compressors carry the risk of oil contamination in the compressed air system. This can be a concern in certain applications where oil contamination can negatively impact product quality or downstream equipment. Water-lubricated compressors reduce the risk of oil contamination, making them advantageous in such applications.
Environmental Impact:
- Oil Disposal: Oil-lubricated compressors generate used oil that requires proper disposal in accordance with environmental regulations. Water-lubricated compressors eliminate the need for oil disposal, contributing to a reduced environmental impact.
- Energy Efficiency: In terms of energy efficiency, water-lubricated compressors tend to have an advantage. Water has a higher specific heat capacity than oil, meaning it can absorb and dissipate heat more effectively. This can result in improved cooling efficiency and potentially lower energy consumption compared to oil-lubricated compressors.
Application-Specific Factors:
- Operating Pressure: Water-lubricated compressors are generally suitable for lower to moderate operating pressures. Oil-lubricated compressors, on the other hand, can handle higher operating pressures, making them more appropriate for applications that require higher pressure levels.
- Temperature Sensitivity: Water-lubricated compressors may have limitations in applications where low temperatures are encountered. Water freezing or becoming slushy can cause operational issues. Oil-lubricated compressors, with appropriate low-temperature oil formulations, can better handle such temperature-sensitive conditions.
Cost Considerations:
- Initial Cost: Water-lubricated compressors generally have a lower initial cost compared to oil-lubricated compressors. This cost advantage can be attractive for applications with budget constraints.
- Maintenance Cost: Over the long term, water-lubricated compressors may have lower maintenance costs due to the elimination of oil changes and associated maintenance tasks. However, it’s important to consider the specific maintenance requirements and costs associated with each type of compressor.
By considering these factors, including the operating environment, maintenance and service requirements, environmental impact, application-specific factors, and cost considerations, one can make an informed decision when choosing between water-lubricated and oil-lubricated compressors.
.webp)
What is a water lubrication air compressor?
A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics:
Working Principle:
In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear.
Advantages:
1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries.
2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting.
3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs.
4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues.
Applications:
Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
- Food and beverage processing
- Pharmaceutical manufacturing
- Electronics manufacturing
- Spray painting and coating
- Laboratories and research facilities
- Dental offices
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.


editor by CX 2023-11-06
China Best Sales High Efficiency and Energy Saving Industrial Electric Stationary Direct Driven AC Power Oil Less Screw Air Compressor for Drilling Rig air compressor CHINAMFG freight
Product Description
| Model | WZS-20AZ |
| Air Flow/Working pressure | 2.4m3/min @ 7bar |
| 2.2m3/min @ 8bar | |
| 2.0m3/min @ 10bar | |
| 1.7m3/min @ 12.5bar | |
| Compression stage | Single |
| Type of Cooling | Air Cooling |
| Exhaust Temperature | < ambient temperature+8 degrees |
| Oil content of discharged air | <2ppm |
| Noise | 70±2 dB(A) |
| Power | 380VAC/3phase/50Hz (Adjustable) |
| Starting way | Y-△ start |
| Driven method | Direct-driven |
| Motor power | 15kw/20hp |
| Dimension | 1040*800*1180mm |
| Weight | 410kg |
Parameter Summary List:
| WZS- | 10AZ | 15AZ | 20AZ | 25AZ | 30AZ | 50AZ | 75AZ | 100AZ | 125AZ | |
| Air flow / pressure (m³/min/MPa) |
1.2/0.7 | 1.7/0.7 | 2.4/0.7 | 3.1/0.7 | 3.8/0.7 | 6.4/0.7 | 10.5/0.7 | 13.6/0.7 | 16.3/0.7 | |
| 1.1/0.8 | 1.6/0.8 | 2.2/0.8 | 2.9/0.8 | 3.5/0.8 | 6.1/0.8 | 9.8/0.8 | 13.3/0.8 | 15.0/0.8 | ||
| 0.95/1.0 | 1.4/1.0 | 2.0/1.0 | 2.7/1.0 | 3.2/1.0 | 5.7/1.0 | 8.7/1.0 | 11.6/1.0 | 14.6/1.0 | ||
| 0.8/1.25 | 1.2/1.25 | 1.7/1.25 | 2.2/1.25 | 2.9/1.25 | 5.1/1.25 | 7.5/1.25 | 9.8/1.25 | 12.3/1.25 | ||
| Motor | Power (kw) | 7.5 | 11 | 15 | 18.5 | 22 | 37 | 55 | 75 | 90 |
| Horse power (HP) | 10 | 15 | 20 | 25 | 30 | 50 | 75 | 100 | 125 | |
| Dimension | Length(mm) | 1000 | 1040 | 1040 | 1100 | 1400 | 1600 | 2050 | 2050 | 2150 |
| Width (mm) | 600 | 800 | 800 | 850 | 850 | 1000 | 1200 | 1200 | 1300 | |
| Height (mm) | 1000 | 1180 | 1180 | 1300 | 1150 | 1370 | 1500 | 1500 | 1700 | |
| Noise dB(A) | 66±2 | 70±2 | 70±2 | 70±2 | 71±2 | 74±2 | 74±2 | 75±2 | 75±2 | |
| Outlet diameter | G3/4 | G3/4 | G3/4 | G11/4 | G11/4 | G11/2 | G2 | G2 | G2 | |
| Weight (kg) | 240 | 400 | 410 | 590 | 620 | 840 | 1735 | 1850 | 1920 | |
| WZS- | 150AZ/W | 180AZ/W | 220AZ/W | 250AZ/W | 300AZ/W | 340AZ/W | 400AZ/W | 480AZ/W | 540AZ/W | |
| Air flow/pressure (m³/min/MPa) | 20.3/0.7 | 24.0/0.7 | 27.0/0.7 | 32.5/0.7 | 40.0/0.7 | 43.5/0.7 | 50.8/0.7 | 60.0/0.7 | 72.0/0.7 | |
| 19.0/0.8 | 23.0/0.8 | 26.5/0.8 | 31.0/0.8 | 36.8/0.8 | 42.0/0.8 | 48.2/0.8 | 57.0/0.8 | 68.0/0.8 | ||
| 17.0/1.0 | 20.0/1.0 | 22.5/1.0 | 28.0/1.0 | 32.2/1.0 | 38.8/1.0 | 42.6/1.0 | 50.0/1.0 | 60.5/1.0 | ||
| 14.6/1.25 | 18.0/1.25 | 20.1/1.25 | 25.1/1.25 | 28.5/1.25 | 34.6/1.25 | 39.8/1.25 | 45.0/1.25 | 50.5/1.25 | ||
| Motor | Power (kw) | 110 | 132 | 160 | 185 | 220 | 250 | 300 | 350 | 400 |
| Horse power (HP) | 150 | 180 | 220 | 250 | 300 | 340 | 400 | 480 | 540 | |
| Dimension | Length(mm) | 2800 | 2800 | 2800 | 2800 | 2900 | 2900 | 4200 | 4200 | 4200 |
| Width (mm) | 1650 | 1650 | 1650 | 1650 | 1860 | 1860 | 2200 | 2200 | 2200 | |
| Height (mm) | 1850 | 1850 | 1850 | 1850 | 2000 | 2000 | 2150 | 2150 | 2150 | |
| Noise dB(A) | 75±2 | 75±2 | 75±2 | 78±2 | 78±2 | 78±2 | 80±2 | 82±2 | 83±2 | |
| Outlet diameter | DN65 | DN65 | DN80 | DN80 | DN100 | DN100 | DN125 | DN125 | DN150 | |
| Weight (kg) | 3030 | 3130 | 3210 | 3470 | 4500 | 4600 | 7000 | 7500 | 8100 | |
Q1:Do you offer OEM/ODM/Customer’s logo print?
A1:Yes,OEM/ODM,Customer’s logo are welcomed.
Q2:Delivery Time?
A2:Usually 5-25 days after receiving deposite, specific delivery date depends on order quantity.
Q3: What’s your payment terms?
A3:Regularly 30% deposite and 70% balance by T/T,Western Union,Paypal ,other payment terms also can be discussed based on our cooperation.
Q4:How to control your quality?
A4:We have professional QC team,control the quality during the mass production and inspect all goods before delivery.
Q5:If we don’t have shipping forwarders in China, can you do that for us?
A5:We can offer best shipping line to ensure you can get the goods timely at best price.
Q6:I never come to China before,can you be my guide in China?
A6:We are happy to provide you one-stop service,such as booking the ticket,pick up at the airport, booking hotel,accompany visiting market or factory.
| After-sales Service: | Video Technical Support |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-11-03
China best Industrial Equipment Rotary Screw Air Compressor Power Frequency VSD Integrated Compressor air compressor CHINAMFG freight
Product Description
|
VSD screw air compressor |
|
|
♦ Intelligent Touch-Screen Design |
|
|
♦ Direct Driver |
|
|
♦ Oil Gas Separator |
|
|
♦ Oil Filter |
|
|
♦ Air Filter |
|
|
♦ Stainless Steel |
|
|
♦ Piping Design |
Product features
One shaft type structure
1. Permanent magnet motor and airend use the embedded integrated Shaft connecting structure, more compact, 100% transmission Efficiency.
2. No motor bearings, eliminating the motor bearing fault points. Different speeds, permanent magnet
motor with high efficiency, Remarkable energy-saving effect
1. At rated speed point, permanent magnet motor efficiency is higher Than ordinary motors.
2. Under low motor speed, permanent magnet motor can still keep high Motor efficiency. If the gas consumption less, it still keeps extremely High efficiency. Compared with common frequency conversion
3: Motor, the motor efficiency appears obvious gap and the air Compressor has effective energy saving
It has the integrated structure, configuration of high efficiency Permanent magnet motor, small size, saving space, easy disassembly. Deloying efficient permanent magnet variable frequency controllor, it Small volume, low noise Can change the speed of the permanent magnet motor according to The exhaust volume, it will achieve lower operation noise than ordinary Ones.
4. Permanent magnet motor has high performance NdFeB permanent Magnet, 120 º Cwithout loss of excitation, and service life of over 15 Years.
5. Stator coil adopts special inverter corona resistant enamelled wire. Insulation performance and longer service life.
6. Realizing soft start, the motor current will not exceed the full load Current during operation, and greatly reduce the impact on network Equipment, no damage to electrical equipment.OSG-EZV series permanent magnet compressor Stable operation.
Energy-saving advantages:
a. Permanent magnet motor has high performance NdFeB permanent Magnet, 120 º Cwithout loss of excitation, and service life of over 15 Years.
b. Stator coil adopts special inverter corona resistant enamelled wire. Insulation performance and longer service life.
c. Realizing soft start, the motor current will not exceed the full load Current during operation, and greatly reduce the impact on network Equipment, no damage to electrical equipment.OSG-EZV series permanent magnet compressor
Energy-saving advantages:
Condition energy saving
1: The permanent magnet motor remains high efficiency at low speeds, ensuring Obvious energy-saving advantages in small air volume.
2: Frequency range from 0%-100% (common conversion from 60%-100%)
3: Compared with the fixed speed compressor, energy saving 22%-40%
4: Compared with the common inverter compressor, energy saving 5%-15%
5: System volume fluctuations larger, then energy-saving effect more obviously.
6: Energy saving system of unloading (inverter):
According to the stationary air compressors in gas consumption fluctuation, it has the unloading time, then the air compressor idling but also need 45% of the Electricity, but the permanent-magnet frequency air compressor will control for Inverter, no unloading and no waste. If the air compressor units become larger,
Energy saves more. Save the wasted electric energy by pressure control bandwidth (energy saving):
Fixed compressor must set a minimum control pressure for the 1Barg band (i. E. Air Compressor limits) to avoid the impact on the unit and the power grid. Several Machines must use together with a pressure gradient, more wide pressure, while the OSG permanent-magnet variable-frequency Air compressor series is inverter control,Unlimited stop, no need to set pressure, but a pressure point on the line. The pressureOf each 0.14Barg bandwidth, the system can save energy 1%.
Energy saving startup (inverter):
Air compressor’ s starting current is 3-6 times of the rated current, the frequently Start will waste a lot of energy, and frequency conversion type has no frequent Starting and stopping, but soft start. The maximum current does not exceed the Rated working current, no energy waste. At the same time also greatly reduce the Impact on network equipment, and no damage to electrical equipment OSG company has obtained a compressor production license(certificate NO: XK06-571-0571), has obtained a quality systemCertificate and general machinery certificate. Product design,Manufacturing processes are strict in accordance with ISO9001: 2008 quality system standards
| Model | Pressure (mpa) |
Displacement (m³/min) |
Power (kw) |
Dimension (mm) |
Weight (kg) |
Outlet Size |
| VSD-0.7/7.5 | 0.7 | 1.20 | 7.5 | 840*620*850 | 450 | G3/4″ |
| VSD-0.8/7.5 | 0.8 | 1.10 | ||||
| VSD-1.0/7.5 | 1.0 | 0.95 | ||||
| VSD-1.3/7.5 | 1.3 | 0.80 | ||||
| VSD-0.7/11 | 0.7 | 1.70 | 11 | 1150*750*1571 | 500 | G1″ |
| VSD-0.8/11 | 0.8 | 1.60 | ||||
| VSD-1.0/11 | 1.0 | 1.40 | ||||
| VSD-1.3/11 | 1.3 | 1.20 | ||||
| VSD-0.7/15 | 0.7 | 2.40 | 15 | 1150*750*1571 | 550 | G1″ |
| VSD-0.8/15 | 0.8 | 2.20 | ||||
| VSD-1.0/15 | 1.0 | 2.00 | ||||
| VSD-1.3/15 | 1.3 | 1.70 | ||||
| VSD-0.7/22 | 0.7 | 3.80 | 22 | 1300*850*1140 | 620 | Rp1 1/4″ |
| VSD-0.8/22 | 0.8 | 3.50 | ||||
| VSD-1.0/22 | 1.0 | 3.20 | ||||
| VSD-1.3/22 | 1.3 | 2.90 | ||||
| VSD-0.7/37 | 0.7 | 6.40 | 37 | 1500**950*1230 | 1571 | Rp1 1/2″ |
| VSD-0.8/37 | 0.8 | 6.10 | ||||
| VSD-1.0/37 | 1.0 | 5.70 | ||||
| VSD-1.3/37 | 1.3 | 5.00 | ||||
| VSD-0.7/45 | 0.7 | 8.00 | 45 | 1500**950*1230 | 1050 | Rp1 1/2″ |
| VSD-0.8/45 | 0.8 | 7.70 | ||||
| VSD-1.0/45 | 1.0 | 7.00 | ||||
| VSD-1.3/45 | 1.3 | 5.80 | ||||
| VSD-0.7/55 | 0.7 | 10.50 | 55 | 1800*1250*1600 | 1500 | Rp2″ |
| VSD-0.8/55 | 0.8 | 9.80 | ||||
| VSD-1.0/55 | 1.0 | 8.70 | ||||
| VSD-1.3/55 | 1.3 | 7.60 | ||||
| VSD-0.7/75 | 0.7 | 13.60 | 75 | 1950*1250*1650 | 1600 | Rp2″ |
| VSD-0.8/75 | 0.8 | 13.30 | ||||
| VSD-1.0/75 | 1.0 | 11.60 | ||||
| VSD-1.3/75 | 1.3 | 9.80 | ||||
| VSD-0.7/90 | 0.7 | 16.30 | 90 | 2571*1250*1650 | 1800 | DN65 |
| VSD-0.8/90 | 0.8 | 16.00 | ||||
| VSD-1.0/90 | 1.0 | 14.60 | ||||
| VSD-1.3/90 | 1.3 | 12.30 | ||||
| VSD-0.7/110 | 0.7 | 20.30 | 110 | 2460*1500*1800 | 4000 | DN65 |
| VSD-0.8/110 | 0.8 | 19.40 | ||||
| VSD-1.0/110 | 1.0 | 17.30 | ||||
| VSD-1.3/110 | 1.3 | 14.60 | ||||
| VSD-0.7/132 | 0.7 | 24.00 | 132 | 2460*1500*1800 | 4500 | DN65 |
| VSD-0.8/132 | 0.8 | 23.00 | ||||
| VSD-1.0/132 | 1.0 | 20.00 | ||||
| VSD-1.3/132 | 1.3 | 18.00 | ||||
| VSD-0.7/160 | 0.7 | 28.00 | 160 | 2580*1600*1980 | 4800 | DN65 |
| VSD-0.8/160 | 0.8 | 26.50 | ||||
| VSD-1.0/160 | 1.0 | 22.50 | ||||
| VSD-1.3/160 | 1.3 | 20.10 | ||||
| VSD-0.7/185 | 0.7 | 32.50 | 185 | 2800*1700*2030 | 5200 | DN65 |
| VSD-0.8/185 | 0.8 | 31.00 | ||||
| VSD-1.0/185 | 1.0 | 28.00 | ||||
| VSD-1.3/185 | 1.3 | 25.10 | ||||
| VSD-0.7/250 | 0.7 | 43.50 | 250 | 3400*2000*2100 | 6200 | DN100 |
| VSD-0.8/250 | 0.8 | 42.00 | ||||
| VSD-1.0/250 | 1.0 | 38.10 | ||||
| VSD-1.3/250 | 1.3 | 34.60 |
ZheJiang CHINAMFG Gas Compressor Manufacturing Co.,Ltd. founded in 2005, is a leading high technology of machine and equipment manufacturer integrating the design, R&D, production, sales and service for air compressors & Mining Equipment. Adopting advanced technology, design concept and quality control, and we are able to provide customized products to meet customers’ OEM needs.
Our company has more than 520 employees, including 86 senior technicians and professional engineers. Our technical team provides our customers with professional air system solutions. With the total 15000 square meters of the facility, 4 modern advanced production lines are built up to ensure production capacity to meet customer requirements.
Our company has been awarded the honorary title of “ZheJiang high-tech enterprise” and our products enjoy high honors in the industry. Our company has the ISO9001 certification and was awarded the qualification certificate of equipment through military contracts in 2018.
We offer the following products and services:
1. Screw air compressor
1.1 Oil-free screw air compressor
1.2 Oil-injected air compressor
2. Reciprocating piston air compressor
2.1 Piston air compressor
2.2 Oil-free piston air compressor
2.3 Piston medium & high-pressure air compressor
3.Portable air compressor & Mining Equipment
3.1 Diesel or Electric portable screw air compressor
3.2 Air Pick, Rock Drill, DTH Drilling Rig, Crawler Drilling Rig
4. Air compressor accessories
4.1 CHINAMFG or Adsorption compressed air drier
4.2 Compressed air filter or tank
4.3 Lubrication oil
We have a complete system of after-sales service and quality assurance. The company’s material purchase, inspection, manufacturing, installation, and testing are strictly in accordance with the ISO procedures. which will ensure each compressor has reliable quality and has a complete record to trace, if needed.
Q: Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery.
Q: How can we start order with your factory?
A: First, leave us an inquiry and advise which item you’re interested, and then we will contact you in 24 hours. You’re so kind if provide all detailed information, will better for us to know exactly what you need.
Q: What are your MOQ?
A: Different products have different MOQ, most is 1 set.
Q: What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages.
Q: How about your delivery time?
A: Generally, it will take 90 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.
Q: Do you a trade company or real factory?
A: We are 100% factory; we located in ZheJiang city, China.
| After-sales Service: | Online Support |
|---|---|
| Warranty: | 1 Years |
| Lubrication Style: | Lubricated |
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Samples: |
US$ 1500/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
In which industries are air compressors widely used?
Air compressors find extensive usage across various industries due to their versatility and ability to generate compressed air. Here are some industries where air compressors are widely employed:
1. Manufacturing: Air compressors are essential in manufacturing processes for powering pneumatic tools and equipment. They are used for tasks such as operating assembly lines, powering robotic machinery, running paint sprayers, and driving pneumatic actuators.
2. Construction: Air compressors play a crucial role in the construction industry. They power pneumatic tools like jackhammers, nail guns, impact wrenches, and concrete breakers. Compressed air is also used for concrete spraying, sandblasting, and operating air-powered lifts and hoists.
3. Automotive: Air compressors are widely used in automotive manufacturing and repair. They power air tools used in auto body shops, tire inflation equipment, pneumatic lifts, and air-operated brake systems. Compressed air is also utilized in vehicle painting and drying processes.
4. Oil and Gas: The oil and gas industry extensively relies on air compressors for various applications. They are used for pneumatic drilling, powering pneumatic tools in refineries and petrochemical plants, operating pneumatic valves and actuators, and providing instrument air for control systems.
5. Food and Beverage: Air compressors are employed in the food and beverage industry for tasks such as packaging, bottling, and sealing. They power pneumatic conveying systems, control air pressure in food processing equipment, and provide clean compressed air for food handling and storage.
6. Pharmaceutical and Healthcare: Air compressors find application in pharmaceutical manufacturing and healthcare facilities. They are used for operating medical equipment, such as ventilators and dental tools. Compressed air is also utilized in pharmaceutical processes, including tablet coating, fluid bed drying, and aseptic packaging.
7. Aerospace: The aerospace industry relies on air compressors for various applications, including aircraft maintenance and assembly. They power pneumatic tools for aircraft repair, provide compressed air for cleaning and pressurizing systems, and support ground operations, such as tire inflation and aircraft de-icing.
8. Mining: Air compressors are extensively used in the mining industry. They power pneumatic tools for drilling, rock blasting, and excavation. Compressed air is also utilized for ventilation, conveying materials, and operating underground equipment.
9. Energy and Utilities: Air compressors play a vital role in the energy and utilities sector. They are used in power generation plants for pneumatic control systems, instrument air, and operating pneumatic valves. Compressed air is also employed for cleaning and maintenance purposes.
These are just a few examples of the industries where air compressors are widely utilized. The versatility and reliability of air compressors make them indispensable in numerous applications across diverse sectors.


editor by CX 2023-11-01
China Hot selling QA 30% Power Saving Air Compressor Professional Industrial Single Screw Compressors Oil Free High Efficiency Compressor 4bar 160kw with Hot selling
Product Description
Lead Time
Product Description
TR132WL 0.4Mpa 4Bar 30m3/min 132KW screw type energy-saving low pressure oil free air compressor
Specifications
| Model | Maximum working Pressure | FAD | Motor Power | Noise | Pipe diameters of cooling water in and out | Quantity of | Quantity of lubricating water | Dimension | Weight | Air outlet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| cooling water | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Inlet water | L*W*H | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 32ºC | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Mpa | M3/min | KW/HP | DB | T/H | L | mm | KG | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| TR30A/WL | 0.4 | 6.7 | 30/40 | 66 | 1 1/2″ | 7 | 50 | 1650*1180*1505(A) 15.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox. direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min). 12. Automatic Cleaning System The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary. Introduction Company Information Package Delivery
BACK HOME
Can Water-Lubricated Air Compressors Be Used in Cold Climates?Water-lubricated air compressors can be used in cold climates, but there are certain considerations and precautions to keep in mind. Here’s a detailed explanation of using water-lubricated air compressors in cold climates: Freezing of Water:
Protection and Insulation:
Alternative Lubrication Methods:
Manufacturer Recommendations:
By implementing proper insulation, heating measures, and following the manufacturer’s guidance, water-lubricated air compressors can be used effectively in cold climates. It is important to assess the specific requirements of the application and consider the potential challenges associated with freezing temperatures to ensure the reliable and safe operation of the water-lubricated compressor system.
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems: Step 1: Identify the Problem: The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps. Step 2: Check Water Supply: Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system. Step 3: Inspect Water Filters and Strainers: Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration. Step 4: Verify Water Pressure: Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines. Step 5: Examine Water-Lubrication Components: Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed. Step 6: Check for Air in the System: Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved. Step 7: Inspect Cooling Mechanisms: Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation. Step 8: Consult Manufacturer Documentation: If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system. Step 9: Seek Professional Assistance: If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues. By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
What is a water lubrication air compressor?A water lubrication air compressor, also known as a water-injected air compressor, is a type of compressor that utilizes water as a lubricant and cooling medium in its operation. Unlike traditional air compressors that rely on oil for lubrication, water lubrication air compressors offer specific advantages and are commonly used in certain applications. Here’s an overview of how water lubrication air compressors work and their key characteristics: Working Principle: In a water lubrication air compressor, the compression process involves injecting a controlled amount of water into the compression chamber. The water acts as a lubricant and cooling agent, ensuring smooth operation and preventing excessive heat buildup. As the air is compressed, the water lubricates the internal components, reducing friction and wear. Advantages: 1. Reduced Environmental Impact: One of the significant advantages of water lubrication air compressors is their reduced environmental impact. These compressors eliminate the need for oil lubrication, resulting in lower oil consumption and the elimination of oil-related contamination risks. This makes them a more environmentally friendly option, particularly in applications where oil contamination must be avoided, such as in food processing or pharmaceutical industries. 2. Enhanced Air Quality: Water lubrication air compressors produce cleaner compressed air compared to oil-lubricated compressors. The absence of oil in the compression process eliminates the risk of oil carryover into the air system. This is essential in applications where clean and oil-free compressed air is required, such as in electronics manufacturing or spray painting. 3. Improved Energy Efficiency: Water lubrication air compressors can offer improved energy efficiency compared to oil-lubricated compressors. The water injected during the compression process helps in cooling the air, reducing the energy required for subsequent cooling and drying processes. This can lead to energy savings and lower operating costs. 4. Lower Maintenance Requirements: Water lubrication air compressors generally have lower maintenance requirements compared to oil-lubricated compressors. The absence of oil means no oil changes or oil filter replacements, simplifying maintenance tasks and reducing costs. However, regular checks and maintenance of the water filtration system are necessary to ensure the water quality and prevent any potential contamination issues. Applications: Water lubrication air compressors are commonly used in applications where clean and oil-free compressed air is critical. Some typical applications include:
These compressors provide a reliable and environmentally friendly solution for industries and applications that require high-quality compressed air without oil contamination.
China Good quality Xas88 CHINAMFG Portable Mobile Screw/Piston Air Compressor Copco Diesel Power 7bar 5min/Min with Best SalesProduct Description
XAS88 CHINAMFG Portable Mobile Air Compressor Diesel Power 7bar 5min/min The new 8 Series compressor range from CHINAMFG is the result of over a decade of continuous development. For the first time, it’s possible to transport behind a normal passenger car, with no special driving license, a compressor that can produce up to 5m3 of air, with a full size fuel tank, aftercooler and generator all incorporated into a compact and lightweight package. This is all made possible by the latest development in our pioneering air element design, meaning we can produce a compressor up to 150kg lighter than comparable models. However, we understand that, this means nothing without efficiency. Efficiency can mean many things, such as: reduced service time, fuel consumption or increased utilization. The 8 Series ticks all the boxes when it comes to delivering outstanding performance in all of these categories. Lastly, depending on your application you might ask about robustness, durability, The amazing new 8 Series from Atlas Copco, it’s all about the numbers, it’s all about changing the game and we have one clear challenge to you – what do you tow?
More CHINAMFG air compressor:
Can air compressors be used for cleaning and blowing dust?Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes: 1. Cleaning Machinery and Equipment: Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness. 2. Dusting Surfaces: Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging. 3. Cleaning HVAC Systems: Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality. 4. Blowing Dust in Workshops: In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes. 5. Cleaning Electronics and Computer Equipment: Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices. 6. Industrial Cleaning Applications: Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently. When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force. Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.
Can air compressors be used for inflating tires and sporting equipment?Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes: 1. Tire Inflation: Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires. 2. Sporting Equipment Inflation: Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation. 3. Air Tools for Inflation: Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks. 4. Adjustable Pressure: One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety. 5. Efficiency and Speed: Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually. 6. Portable Air Compressors: For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply. It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
What is the impact of tank size on air compressor performance?The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size: 1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods. 2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan. 3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment. 4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance. 5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance. It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size. Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
.webp)