Tag Archives: china screw compressor

China best Muqi Factory Supply Screw Type 55kw 75kw 90kw 110kw 200kw Dry Oil Free Industrial Screw Air Compressor Factory Price with Great quality

Product Description

Muqi Factory Supply Screw Type 55kw 75kw 90kw 110kw 200kw Dry Oil Free Industrial Screw Air Compressor Factory Price


PM VSD Screw Air Compressor
Permanent magnet use high-strength NdFeB (neodymium iron boron) magnetic steel, high magnetic energy product and connectivity of NdFeB magnetic steel, make rare-earth permanent magnet motor have small size , lightweight , high efficient, good character etc

Advantages:
The permanent magnet motor remains high efficiency at low speeds, ensuring obvious energy-saving advantages in small air volume
-Frequency range from 0%-100%(common conversion from 60%-100%)D
-Compared with the fixed speed compressor, energy saving 22%-40%
-Compared with the common inverter compressor, energy saving 5%-15%
System volume fluctuations larger, the energy-saving effect more obvious.

Product Specification

Factory Supply Screw Type 55kw 75kw 90kw 110kw 200kw Dry Oil Free Industrial Screw Air Compressor Factory Price

Two-Stage Two Drive Series Technical Parameters(VSD)

Model Number

MQ-90DA

Capacity

18.5-23.5m3/min

Motor Power

90kw

Dimensions(mm)

2900*1650*1850

Weight

2680kg

Air Outlet Pipe Diamater

DN80

 

Product Details

Unique air end

Two IPM motors,two-stage screw,gearless
More stable,more energy saving,more efficiency
SK bearing
It has the advantages of withstanding higher loads, having lower noise, greatly reducing operating costs, and increasing machine reliability

 

No transmission trouble
TRSLPM running under the top efficiency all time
High efficiencylPM motor + “0”transmission loss
Low running noise

Microcomputer intelligent control air compressor dischargepressure,exhaust gas temperature, engine speed, oil pressure,water temperature and fuel tank level operating parameterswith automatic alarm and shutdown protection.

Multi-language display
Personalized Control System
Easy to operate,can work for you 24 hours without anyone on duty

 

Product Parameters

Permanent magnet screw air compressor
Two-Stage Two Drive Series Technical Parameters(VSD)
 

Model Power(Kw) Free air delivery(m3/min) Weight(kg) size(mm) Pipe Diamater
0.6Mpa 0.7MPa 0.8MPa 1.0MPa length width height

MQ37DA

37

8.8

8.4

8

7.1

1500

2380

1300

1590

DN50

MQ45DA

45

11.8

11.4

10.7

9.4

1750

2380

1300

1590

DN50

MQ55DA

55

14.2

13.7

12.7

11.7

1750

2380

1300

1590

DN50

MQ75DA

75

17

16.3

16.1

12.8

2650

2900

1650

1850

DN65

MQ75DW

75

17

16.3

16.1

12.8

2430

2400

1650

1850

DN65

MQ90DA

90

23.5

22.3

20.6

18.5

2680

2900

1650

1850

DN65

MQ90DW

90

23.5

22.3

20.6

18.5

2490

2400

1650

1850

DN65

MQ110DA

110

26

25

24

22

2700

2900

1650

1850

DN65

MQ110DW

110

26

25

24

22

2600

2400

1650

1850

DN65

MQ132DA

132

30

29

28

24.5

3340

3100

1800

1950

DN80

MQ132DW

132

30

29

28

24.5

2960

2650

1800

1950

DN80

MQ160DA

160

35.5

34.5

33.8

31

3360

3100

1800

1950

DN80

MQ160DW

160

35.5

34.5

33.8

31

3180

2650

1800

1950

DN80

MQ185DA

185

41

38.5

36

32

4400

3600

1900

2050

DN100

MQ185DW

185

41

38.5

36

32

3650

3000

1900

2050

DN100

MQ200DA

200

42

41

40

34

4400

3600

1900

2050

DN100

MQ200DW

200

42

41

40

34

3700

3000

1900

2050

DN100

MQ220DA

220

50

46.5

45

40

5120

4100

2255

2300

DN125

MQ220DW

220

50

46.5

45

40

4550

3250

2255

2300

DN125

MQ250DA

250

58

55

53

43

5120

4100

2255

2300

DN125

MQ250DW

250

58

55

53

43

4550

3250

2255

2300

DN125

 

Applications

 

 

Company Profile

Established in 2012,Muqi Air Compressor Co.,Ltd is a manufacturer which specialized in  R&D, design,produce,sale and after-sales service of air compressor.We are located in HangZhou city, ZheJiang province. With the convenient transportation , you are welcomed to visit us at anytime.
 

As 1 of compressor experts in north of China,Muqi has a complete production line,that is we have nearly all kinds of air compressor,such as screw compressor,portable air compressor,industrial air compressor,rotary compressor,oil-less air compressor,two stage air compressor,permanent magnet variable speed/frequency air compressor,energy save air compressor,variable flow air compressor,permanent magnet synchronous compressor,etc.They are widely used in machinery, light industry, textile, food, petroleum, chemical industry, metallurgy, mining, electric power, urban construction, medical research and national defense research and other industries.
About our team,we have R&D department with 15 engineers and technicians,we can offer the solutions for your specific requirements,not only for different voltage(V) and frequency(Hz),besides,there are sales department,production department,QC department,logistic department.All departments cooperate together to make sure to delivery on time and qualified.

Certifications

 

Air compressor service

 

  1. After-sale Service
    • Any questions or requests before, during or after sales, we would like to help you any time and will find you the best solution in 24 hours.
    • Warranty: One year for the whole machine 2 year for air end , and spare parts will be provided with best price.
  2. Special Customized Service
      1) Full OEM
    • Quantity: at least 5 pcs
    • In this plan, we will do all the changes (Color, name plate and logo) as your need, and will not charge extra fee.
      2) Half OEM
    • Quantity: no limit
    • Under this program, we can make the necessary alteration (name plate and logo) but we will charge some extra fee for the name plate, as the name plate factory has the MOQ.
     3) Logo OEM
      • Quantity: no limit
    • Only the logo will be changed to yours, and no extra fee will be charged

FAQ

  1. Q:Our voltage is different from China,can we use your air compressor?

          A:Sure,voltage and color are customizable,380V/3Ph/50HZ/60HZ, 220V/3Ph/50HZ/60HZ,  440V/3Ph/50HZ/60HZ, 415V/3Ph/50HZ/60HZ or as your required.
 

    2.Q:What’s the warranty terms of your screw air compressor?

       A: 1 year
 

   3.Q: What service will u provide if there is problem during the warranty?

      A:We have after-sales service team.During the warranty period, we will provide free parts replacement and technical guidance no matter what model of air compressor.
 

  4.Q:Can you accept OEM orders?

     A: Yes, with a professional design team, OEM orders are very welcome.
 

  5.Q:What’s your delivery time?

     A: Usually,380V 50HZ we can ship within 7-15 days. Other electric or other colors we will ship within 25-30 days
 

  6.Q: what’s your payment term?
     A: Generally,it’s T/T. Also we could accept USD, RMB, Euro and other currency
 

/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

Can Water-Lubricated Compressors Be Used in High-Pressure Applications?

Water-lubricated compressors can be used in high-pressure applications, but there are certain considerations and limitations to keep in mind. Here’s a detailed explanation:

Water-lubricated compressors are typically designed for lower to medium-pressure ranges. They are commonly used in applications where the required discharge pressure does not exceed a certain threshold, typically up to a few hundred pounds per square inch (psi). However, there are specialized water-lubricated compressors available that can handle higher pressures, depending on the specific design and construction.

The ability of a water-lubricated compressor to operate at high pressures depends on several factors:

  1. Compressor Design: The design and construction of the compressor play a crucial role in determining its maximum pressure rating. Compressors designed for high-pressure applications need to have robust components, such as reinforced casings, high-strength materials, and proper sealing mechanisms to withstand the elevated pressures. Special attention should be given to the design of the water-lubricated bearing system to ensure it can handle the increased loads and pressures.
  2. Water Supply and Cooling: High-pressure compressors generate more heat during the compression process, requiring efficient cooling mechanisms to maintain safe operating temperatures. Sufficient water supply and cooling capacity must be available to handle the increased heat load. Adequate flow rates, temperature control, and cooling methods, such as water jackets or external cooling systems, may be necessary to prevent overheating and ensure proper lubrication and cooling of the compressor components.
  3. Water Quality: The quality of the water used for lubrication becomes even more critical in high-pressure applications. Any impurities, contaminants, or minerals present in the water can cause increased wear, corrosion, or blockages, jeopardizing the compressor’s performance and reliability. Water treatment or filtration systems may be required to maintain the desired water quality and prevent damage to the compressor.
  4. Sealing and Leakage Control: As the pressure increases, it becomes more challenging to maintain effective sealing and prevent leakage in the compressor system. Proper sealing mechanisms, such as high-quality seals and gaskets, are essential to ensure minimal leakage and maintain the required pressure levels. Adequate monitoring and maintenance of the sealing components are necessary to prevent energy losses and ensure the compressor’s efficiency.

It’s worth noting that for extremely high-pressure applications, water-lubricated compressors may not be the most suitable choice. In such cases, alternative lubrication methods, such as oil or specialized lubricants, are often preferred to handle the extreme pressures and provide adequate lubrication and cooling.

When considering the use of water-lubricated compressors in high-pressure applications, it is crucial to consult with the compressor manufacturer or a qualified engineer to ensure that the chosen compressor model is specifically designed and rated for the desired pressure range. Proper installation, maintenance, and adherence to the manufacturer’s guidelines are essential to ensure the safe and efficient operation of the compressor in high-pressure conditions.

air compressor

Are There Regulations Governing the Use of Water-Lubricated Air Compressors?

When it comes to the use of water-lubricated air compressors, there are several regulations and standards that govern their operation and ensure compliance with safety, environmental, and performance requirements. Here’s a detailed explanation of the regulations related to water-lubricated air compressors:

1. Occupational Safety and Health Administration (OSHA) Regulations:

OSHA is a regulatory agency in the United States that sets and enforces workplace safety and health standards. While OSHA does not have specific regulations solely dedicated to water-lubricated air compressors, they have general regulations that apply to all types of air compressors. These regulations include requirements for safe operation, maintenance, and guarding of equipment to protect workers from hazards such as electrical shocks, mechanical injuries, and exposure to hazardous substances.

2. Environmental Protection Agency (EPA) Regulations:

The EPA is responsible for implementing and enforcing environmental regulations in the United States. Although there are no specific regulations for water-lubricated air compressors, the EPA has regulations that govern the discharge of water and other substances into the environment. If the water-lubricated compressor system involves the use of cooling water or generates wastewater, it may be subject to regulations related to water pollution control, water treatment, and proper disposal of wastewater.

3. International Organization for Standardization (ISO) Standards:

The ISO develops international standards that provide guidelines and requirements for various industries and technologies. ISO 8573 is a standard that addresses the quality of compressed air used in different applications. This standard sets limits and specifications for various contaminants in compressed air, including water content. Water-lubricated air compressors need to comply with the requirements of ISO 8573 to ensure the produced compressed air meets the desired quality standards.

4. Manufacturer Guidelines and Recommendations:

In addition to regulatory requirements, it is essential to follow the guidelines and recommendations provided by the manufacturers of water-lubricated air compressors. Manufacturers typically provide instructions for installation, operation, maintenance, and safety precautions specific to their equipment. Adhering to these guidelines is crucial to ensure the safe and proper functioning of the equipment and to maintain warranty coverage.

It’s important to note that the specific regulations and standards governing water-lubricated air compressors may vary depending on the country or region. Therefore, it is advisable to consult the relevant regulatory agencies, industry organizations, and local authorities to ensure compliance with applicable regulations and standards in a particular jurisdiction.

By complying with the relevant regulations, standards, and manufacturer guidelines, users of water-lubricated air compressors can ensure the safe and efficient operation of their equipment while minimizing any potential environmental impacts.

air compressor

How does a water lubrication system work in air compressors?

A water lubrication system in air compressors is designed to provide lubrication and cooling to the internal components of the compressor using water as the lubricant. This system offers an alternative to traditional oil lubrication systems and has specific advantages in certain applications. Here’s a detailed explanation of how a water lubrication system works in air compressors:

1. Water Injection:

In a water lubrication system, a controlled amount of water is injected into the compression chamber of the air compressor. This can be achieved through various methods, such as direct injection or atomization of water droplets.

2. Lubrication:

As the compressed air is generated, the injected water serves as a lubricant for the internal components of the compressor. The water forms a thin film on the surfaces, reducing friction and wear between the moving parts. This lubrication helps to improve the efficiency and lifespan of the compressor.

3. Cooling:

The water injected into the compression chamber also acts as a cooling medium. As the air is compressed, heat is generated, and the injected water absorbs some of this heat. The water carries away the heat, preventing excessive temperature rise and maintaining optimal operating conditions for the compressor.

4. Separation and Filtration:

After serving its lubrication and cooling purposes, the water needs to be separated from the compressed air. The compressed air and water mixture pass through a separator or filtration system, which separates the water from the compressed air. This can involve mechanisms such as centrifugal force, gravity separation, or filtration media.

5. Water Treatment:

In water lubrication systems, proper water treatment is essential to maintain the quality and performance of the system. Water filtration and purification processes are employed to remove impurities, contaminants, and any solid particles present in the water. This ensures that the injected water is clean and free from any substances that could potentially harm the compressor or the downstream air system.

6. Recirculation or Discharge:

Depending on the specific design of the water lubrication system, the separated water can be recirculated back into the system for reuse or discharged from the compressor. Recirculation systems involve the treatment and filtration of the water before reintroducing it into the compression chamber. Discharge systems, on the other hand, may involve further treatment or disposal of the water in an environmentally responsible manner.

By utilizing a water lubrication system, air compressors can benefit from reduced oil consumption, improved air quality, and enhanced energy efficiency. These systems are commonly employed in industries where oil contamination must be avoided, such as food processing, pharmaceutical manufacturing, and electronics production.

water_lubrication_air_compressorwater_lubrication_air_compressor
editor by lmc 2025-03-03

China Custom China Sanzhi Powerful Professional Grade Permanent Magnet VFD/VSD Two-Stage Air Cooling Screw Air Compressor for Pet Blowing Industry, Gas Filling Station air compressor lowes

Product Description

Introducing the groundbreaking Low-Pressure Compressor, an extraordinary innovation brought to you exclusively by Sanzhi (ZheJiang ) Compressor Co., Ltd.! Embark on an unrivaled journey of industrial CHINAMFG with our spectacular Two-Stage Compression Permanent Magnet Variable Frequency Drive Screw Air Compressor. This exceptional engineering marvel is designed to offer an outstanding array of power options, ranging from a robust 15KW to an impressive 250KW. Engineered with precision and versatility in mind, this powerhouse of reliability and efficiency is truly set to revolutionize your operations. Experience the transformative power of this state-of-the-art compressor, meticulously crafted to exceed the diverse and demanding requirements of today’s industries. Immerse yourself in the pinnacle of air compression technology with this high-capacity machine, ideally suited for heavy-duty applications. With its sophisticated two-stage air cooling system, the compressor ensures unrivaled performance and longevity, establishing itself as the premier choice for businesses aiming to streamline operations and maximize productivity. Discover the pioneering brilliance of Sanzhi, where superior quality harmonizes seamlessly with exceptional performance, elevating industrial expectations to unprecedented new heights.

Product Structure

Internal Structure Frontside

Internal Structure Backside

Working Principle

Within this expertly crafted air compression environment lies the secret to unlocking unprecedented energy efficiency. Sanzhi (ZheJiang ) Compressor Co., Ltd. presents a marvel where single-stage compression boasts energy needs akin to multi-stage systems. However, real-world factors like coupling power losses, bearing friction, and fluid viscosity-driven cooling effects can elevate energy consumption. By meticulously optimizing the compression ratio at each stage, these inefficiencies are significantly reduced. Consequently, our multi-stage compression exhibits substantially lower total power consumption compared to single-stage alternatives, guaranteeing a refined and economically astute operation.

Introducing the CHINAMFG of innovation from Sanzhi (ZheJiang ) Compressor Co., Ltd.: the state-of-the-art Efficient Twin-Stage Two-Stage Air Cooling Screw Air Compressor. This engineering masterpiece features a meticulously refined twin-stage rotary screw mechanism, with each stage’s active screw powered by a robust external power transmission system. The initial stage showcases a low-pressure screw group, seamlessly transitioning to a high-pressure screw group in the second stage. Each screw is enveloped in a protective sealing air film. During operation, the gas experiences an intricate three-phase cycle of suction, pressurization, and exhaust, delivering unmatched compression efficiency and superior performance.

First Stage Compression: Journey into groundbreaking innovation with our two-stage screw air compressor, expertly compressing gas using the low-pressure screw group. Initially, gas is drawn into the compression chamber via the suction valve, where the rapid rotation of the screw rotor compresses it efficiently. Following this primary compression, the gas transitions effortlessly to the second stage, paving the way for further compression excellence.

Second Stage Compression: Elevate to the next tier as the gas experiences intensified compression within a more compact screw space, achieving heightened temperatures and pressures. This culminates as the exhaust valve opens, allowing high-pressure gases to exit the system, thus completing the entire compression cycle with unparalleled precision and effectiveness.

The air begins its sophisticated journey by entering through the air filter into the first compression stage, where it amalgamates with a precisely calculated amount of lubricating oil. This blend is compressed to an intermediate pressure, after which the gas transitions into a cooling channel. Here, it interacts with a generous oil mist, dramatically reducing the temperature. The cooled, compressed gas then advances to the second-stage rotor for its ultimate compression to the desired exhaust pressure. CHINAMFG CHINAMFG this final stage, the fully compressed gas exits the system through the exhaust valve, culminating the compression cycle with exceptional precision and efficiency.

Detailed Photos

1) High efficiency of PM motor:Discover a new CHINAMFG of energy efficiency with our state-of-the-art permanent magnet motor. This cutting-edge powerhouse boosts efficiency by an extraordinary 20-30% over conventional models. Its impressive range of constant torque and forward-thinking weak magnetic dynamics ensure it maintains unrivaled efficiency, even when exceeding rated frequency, providing optimal performance at all times.

2) Two-stage compression unique air end:Embrace the future with our revolutionary two-stage compression system, showcasing a uniquely crafted air end. This innovation masterfully combines dual compression rotors within a single casing, operating through direct gear-driven rotors at ideal linear speeds. Experience a remarkable increase in compression efficiency and unmatched reliability.

3) Integrated frequency converter: Harness the power of China’s leading frequency system with our compressor’s vast speed regulation range and precise control. Effortlessly adjust the frequency to match real-time gas needs for outstanding energy savings and enhanced operational performance.
 

4) Reduce internal leakage:Our pioneering two-stage compression technology meticulously optimizes the compression ratio per stage, significantly reducing internal leakage from high to low-pressure zones. This breakthrough elevates volumetric efficiency and enhances overall compressor performance.

5) Variable frequency start and the soft startOur motor, boasting variable frequency and soft start features, is designed to significantly reduce the stress on power grid systems. These features protect electrical components from potential damage, thus prolonging their lifespan remarkably.

6) Reduce energy consumption: Our cutting-edge frequency conversion system seamlessly operates from an impressive 25% to 100%, surpassing the typical 50% to 100% range. It delivers over 30% energy savings compared to fixed-speed compressors, plus an additional 5% efficiency boost over standard variable frequency systems, ideal for varying gas demands.
 

7) No transmission loss: Our brilliantly efficient design features a direct link between the permanent magnet motor and compressor, eliminating transmission components, ensuring flawless 100% transmission efficiency and guaranteeing CHINAMFG performance without compromise.

8) Air cooling method: Our superior air cooling system delivers exceptional cooling power, markedly lowering compressed air temperatures. This approach supports near-isothermal compression, reduces pressure loss, optimizes the compression ratio, and elevates overall efficiency.

9)Smart Touch Controller: Our advanced smart controller, equipped with intuitive intelligence, drastically reduces manual interventions. With a high-resolution color display, it offers user-friendly graphical interfaces, timely maintenance reminders, fault alerts, and safety shutdown notifications to ensure uninterrupted, smooth operation.
 

10)Special Type Intake Valve:Automatic opening ensures seamless engine fuel injection and oil circulation, significantly enhancing overall system efficiency.
With remarkably diminished oil circuit loss, our system achieves a notable efficiency enhancement.
The normally open solenoid valve ensures a secure seal during emergency stops, preventing oil injection and ensuring utmost system safety.

11)Excellent Air Filter:Our top-tier air filter offers unparalleled purification with a robust three-stage filtration system, ensuring premium air quality. It effectively eliminates steam and dust, surpassing the highest emission standards for environmentally conscious operations.

12)High-Quality Soundproof Cotton:Featuring innovative noise reduction housing and premium soundproof cotton, our design dramatically reduces operational vibrations and noise, creating a quieter, more efficient workplace environment.
 

13) Motor maintenance-free:Unveil the pinnacle of compressor technology with our revolutionary maintenance-free permanent magnet motor design, meticulously engineered to eliminate the complexity of internal bearings. This groundbreaking advancement eradicates the inconvenience of bearing maintenance and replacements, significantly curtailing long-term maintenance expenditures. As a result, our compressor systems are synonymous with enhanced reliability, consistently achieving CHINAMFG performance over extended durations. Embrace our innovative solution for unmatched cost-efficiency and extraordinary dependability.

14) Noise Reduction: Immerse yourself in the tranquility provided by Sanzhi (ZheJiang ) Compressor Co., Ltd.’s advanced two-stage compression technology. This remarkable system is expertly designed to optimize the compression ratio, leading to a significant reduction in operational noise levels, particularly during unloading phases. Enjoy a quieter, more efficient workspace that bolsters productivity, courtesy of the Sanzhi Efficient Robust Two-Stage Permanent Magnet VFD Screw Compressor. Trust Sanzhi’s unparalleled engineering expertise to elevate the CHINAMFG of your industrial operations.

15) Effortless Maintenance and Unmatched Service: Step into the future of hassle-free maintenance with our revolutionary two-stage compressor unit, meticulously crafted by Sanzhi (ZheJiang ) Compressor Co., Ltd. This cutting-edge design maintains the familiar structure and systems of a single-stage compressor, with the innovation centered on the screw air end. This ingenious design ensures maintenance and service remain straightforward and user-friendly. Revel in seamless maintenance paired with consistent, high-quality performance with the Sanzhi Efficient Robust Two-Stage Permanent Magnet VFD Screw Compressor. Rely on Sanzhi for effortless maintenance and outstanding results.

Product Parameters

Model Power Exhaust pressure Free air delivery* of unit at working pressure Voltage Frequency Air outlet discharge size Weight Dimensions
KW Mpa m³/min V Hz Inch Kg L*W*H(mm)
SZ15VF-II 15 0.5 4.00 380 50 G1½ 660 1450*780*1180
0.8 3.00
1.3 2.00
SZ19VF-II 18.5 0.5 5.00 380 50 G1½ 680 1450*780*1180
0.8 4.00
1.3 3.80
1.6 2.20
SZ22VF-II 22 0.5 6.60 380 50 G1½ 730 1650*880*1280
0.8 4.20
1.3 3.00
1.6 2.50
SZ30VF-II 30 0.5 7.00 380 50 G1½ 980 2000*1260*1560
0.8 6.40
1.3 4.00
1.6 3.00
SZ37VF-II 37 0.5 10.00 380 50 G1½ 1080 2000*1260*1560
0.8 7.00
1.3 5.50
1.6 4.00
SZ45VF-II 45 0.5 13.00 380 50 G2 1980 2000*1260*1560
0.8 10.00
1.3 6.50
1.6 5.00
SZ55VF-II 55 0.5 17.00 380 50 G2 2180 2150*1300*1730
0.8 12.00
1.3 8.60
1.6 5.00
SZ75VF-II 75 0.5 20.00 380 50 G2 2280 2150*1300*1730
0.8 16.50
1.3 11.00
1.6 9.00
SZ90VF-II 90 0.5 24.00 380 50 DN65 3200 2700*1920*1820
0.8 20.00
1.3 14.00
1.6 11.00
SZ110VF-II 110 0.5 28.00 380 50 DN65 3360 2700*1920*1820
0.8 24.50
1.3 18.00
1.6 14.00
                                                                Due to product updates, the above parameters are subject to deviation in kind.

Our Advantages

1. Competitive Pricing

Unlock the gateway to unparalleled value with Sanzhi (ZheJiang ) Compressor Co., Ltd. When you collaborate with us, you embrace a world of factory-direct pricing excellence, offering you a formidable competitive edge within your industry. Elevate your market presence with our strategic pricing prowess, meticulously crafted to boost your profitability and solidify your market position.

2. Direct Transactions
Transform your purchasing experience through our cost-effective and seamless direct transaction model. Our efficient logistics pipeline delivers products straight from our factory to you, ensuring substantial savings and a consistently reliable supply chain that precisely meets your needs with unparalleled efficiency.

3. OEM & ODM Services
Capitalize on our advanced production and management capabilities to access superior OEM and ODM services. Each offering is tailored to align seamlessly with your unique needs, ensuring that all custom requirements are meticulously executed with precision and excellence.

4. Customized Solutions
Excel in handling non-standard and export orders with our tailor-made solutions. We expertly address a diverse range of voltage, power, and pressure specifications, crafting responses to meet your specific needs. Share your distinct requirements, and we’ll develop solutions that align with your precise expectations flawlessly.

5. Small Order Acceptance
Embark on your journey with us through a small trial order and experience the exceptional quality of our products first-hand. Ensure your complete satisfaction before scaling to larger orders, providing you with the ultimate peace of mind and steadfast confidence in your decision.

6. Rapid Delivery
Experience the peace of mind that comes with our swift and reliable delivery services. We prioritize ensuring the rapid arrival of our premium products, guaranteeing your operations remain seamless and function at CHINAMFG efficiency.

7. Comprehensive Authorization
Amplify your distribution capabilities with our comprehensive authorization certifications. Market and distribute SANZHI brand products with full confidence, supported by our extensive and rigorous certification process that empowers your success and drives your business growth.

Packaging & Shipping

More Products

Successful Cases

Company Profile

Sanzhi (ZheJiang ) Compressor Co., Ltd stands as a distinguished leader in the innovative world of screw air compressors and vacuum pumps. With an illustrious track record spHangZhou over a decade, we are proud to introduce a cutting-edge selection of products. Our comprehensive portfolio includes standard and low-pressure screw air compressors, as well as the revolutionary permanent magnet frequency conversion screw air compressors and advanced two-stage compression screw air compressors. Catering to specialized requirements, our laser cutting screw air compressors deliver precision and reliability. We also offer adaptable single-tank and double-tank mobile screw air compressors. Our electric and diesel mobile screw air compressors are engineered for top-tier performance. Additionally, our cutting-edge screw vacuum pumps are meticulously designed to meet the most rigorous industrial standards.

At Sanzhi, our state-of-the-art production facility is equipped with cutting-edge multi-air compressor assembly lines, ensuring each unit is crafted with unparalleled efficiency and precision. Our dedicated team of over 50 highly skilled experts is committed to elevating our management systems, including the integration of ERP solutions, reducing lead times significantly. This dedication ensures rapid delivery of our premium products. Our relentless pursuit of innovation propels us to the pinnacle of the industry, setting new benchmarks of CHINAMFG that distinguish us from competitors.

Our meticulously crafted management systems are designed to uphold the highest quality standards. Accredited with the esteemed ISO9001 quality management system certification, we maintain rigorous quality control procedures. Each machine undergoes comprehensive inspections throughout various stages, from material selection to production checks and pre-delivery evaluations, ensuring unmatched product reliability and excellence. Our unwavering commitment to quality offers you absolute confidence in superior performance.

Discover our exceptional customer service, beginning with our pre-sales team providing expert guidance to select the ideal air equipment for diverse facilities. We offer extensive customization options, including design and configuration changes, delivering bespoke solutions to meet specific dealer needs through our OEM services. Our professional sales and support team is always available to provide swift and effective post-sales assistance, guaranteeing that your requirements are met promptly and accurately. Experience unrivaled customer care with Sanzhi.

At Sanzhi (ZheJiang ) Compressor Co., Ltd, we are dedicated to delivering products that epitomize superiority, reliability, and stability. Committed to fostering lasting partnerships with our clients, we ensure timely delivery, world-class machinery, and competitive pricing. Our mission is to offer the ideal compressed air solution tailored to your needs, delivering unparalleled value, performance, and satisfaction.

Nestled in the scenic beauty of HangZhou City, ZheJiang Province, China, our factory boasts a prime location just 30 kilometers from HangZhou International Airport, ensuring seamless accessibility within about an hour’s drive. We warmly welcome you to visit our facility and witness our exceptional offerings firsthand! Come and explore the unique Sanzhi experience in person.

FAQ
Q1. Are you a trading company or manufacturer?
A: We are a prominent manufacturer specializing in screw air compressors, with over a decade of profound industry expertise. Our extensive experience distinctly sets us apart in the market, highlighting our exceptional capabilities.

Q2. How do you control quality?
A: 1. We conduct comprehensive inspections of our raw materials to ensure superior quality before production begins.
2. Our installation process is meticulously monitored at every phase to ensure precision and accuracy.
3. Each machine undergoes a minimum of 5 continuous hours of rigorous testing prior to dispatch, guaranteeing CHINAMFG performance and reliability.

Q3. What information must I provide to get the suitable machine?
1. Your required air delivery capacity (Unit: CFM or m³/Min).
2. The desired working pressure (Unit: PSI, Bar or Mpa).
3. The voltage and frequency specifications of your country of residence (V/Hz).
4. Any additional accessories needed, such as an air tank, filters, or air dryers.
Provide us with this information, and we will craft a flawlessly tailored solution uniquely for you! Our expertise guarantees that we meet your exact needs with precision and excellence.

Q4. What is the general unit conversion?
1Bar = 0.1Mpa = 14.5PSI
1m³/min = 35.32 cfm. This precise conversion highlights the extraordinary capacity of our compressors, enabling them to meet the vast needs of industrial usage with unmatched performance and supreme efficiency.
1KW = 1.34 HP. This power conversion underlines the outstanding capability of our compressors, delivering substantial output to ensure stable and trustworthy operation, even in the most challenging environments.

Q5. What is the available voltage air compressor?
A: Sanzhi (ZheJiang ) Compressor Co., Ltd. provides an extensive array of voltage options, expertly accommodating global standards. Select from 380v/50hz/3p, 400v/50hz/3p, 415v/50hz/3p, 220v/60hz/3p, and 440v/60hz/3p. Our commitment is to deliver highly customized solutions that fulfill your specific electrical requirements, ensuring superior compatibility and premium performance.

Q6. How long is the delivery time?
A: For standard voltage units, our efficient processes ensure shipment within an impressive 15 working days post order confirmation. For non-standard voltage needs, contact our devoted sales team for a detailed delivery schedule tailored precisely to your specifications.

Q7. What’s the payment term?
A: Our payment terms are designed for your convenience: 30% T/T in advance, 40% T/T before shipment, and the remaining 30% T/T CHINAMFG receiving the B/L copy. We accept payments in both USD and RMB, offering flexibility and ease for smooth transactions.

Q8. How about your warranty?
A: Sanzhi offers a comprehensive warranty that delivers peace of mind: 1 year for the entire machine and 2 years for the screw air compressor, with consumable spare parts excluded. This commitment emphasizes our dedication to quality and durability.

Q9. What about the maintenance?
A: Initial maintenance is vital and should be performed after 500 operating hours. Subsequent maintenance is recommended between 2000-3000 hour intervals, adjusted to your specific working environment, ensuring optimal performance and longevity.

Q10. Can machines be run in high-temperature environment?
A: Absolutely! Our machines are engineered to deliver exceptional performance even in extreme temperatures. They reliably maintain efficient operation across a wide range of -20° to 45° (-4ºF to 113ºF), guaranteeing durability and dependability under the harshest conditions.

Q11. Do you offer OEM service?
A: Yes, we excel in providing both OEM and ODM services. Our expert design team is proficient in bringing your custom orders to life, crafting tailor-made solutions that perfectly align with your specifications, enhancing brand identity and product differentiation.

Q12. How long could your air compressor be used?
A: Our air compressors are meticulously engineered for exceptional longevity, offering an impressive lifespan that typically exceeds 10 years of dependable and efficient service, ensuring sustained productivity and value.

Q13. Will you provide some spare parts for the machines?
A: Absolutely, we provide a comprehensive selection of superior-quality spare parts designed to ensure your machines continue to operate seamlessly and maintain CHINAMFG performance, maximizing uptime and operational efficiency over the long term.

Q14. How about your after-sales service?
A: We offer exceptional after-sales support, providing detailed online guidance for installation and commissioning. If needed, we can arrange for expert engineers to deliver hands-on training and comprehensive installation assistance, ensuring seamless integration and optimal operation.

/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

air compressorsair compressors
editor by lmc 2025-02-24

China wholesaler (SCR100G Series) Hot Sale Ghh Oil-Free Airend Ultracoat TM Super Coating Dry Type Oil Free Silent Screw Air Compressor arb air compressor

Product Description

If you are interested in any of ourFAQ

1   What trade terms do we provide? What kind of settlement currency do we offer?

Trade term :CIF ,CFR ,FOB,Ex-Works 
As far Our business traded in Dollars ,Euros and RMB .

2   How long is our delivery?

Our standard delivery time is 30-40 days after confirmation order & receiving recipets for standard compressors, for the other non standard requirement will be discussed case by case.

3   What is the voltage of the compressor?

The available voltage include 380V/50HZ/3Phase, 400V/50HZ/3P, 415V/50HZ/3P, 220V/60HZ/3P, 380V/60HZ/3P, 440V/60HZ/3P. At the same time we provide other voltage  according to customer requirement.

4  Can our compressor run in high temperature environment? What is the working temperature range for our machine?

Yes ,our machine would run in high temperature environment ,until now our products have been sold to many countries which would meet high temperature in summer ,such like Iraq, Saudi Arabia, Egypt, Algeria, etc. 
Work temperature range :1-45 ºC(33.8ºF-113ºF)

5  What’s the min. Order requirement ?

Min. Order requirement is 1PCS. 

/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

Are There Specific Water Treatment Requirements for Water-Lubricated Compressors?

Water-lubricated compressors often have specific water treatment requirements to ensure optimal performance, prevent equipment damage, and maintain the desired water quality. Here’s a detailed explanation of the water treatment considerations for water-lubricated compressors:

Water Quality:

  • Purity: The water used for lubrication should be clean and free from impurities, contaminants, or excessive minerals. Impurities in the water can lead to corrosion, blockages, and reduced lubrication effectiveness. Water sources should be evaluated to ensure they meet the required purity standards.
  • Chemical Composition: The chemical composition of the water should be within acceptable limits to avoid any adverse reactions with compressor components or lubricants. Certain water characteristics, such as pH, alkalinity, hardness, and conductivity, need to be monitored and controlled to prevent issues like scaling, fouling, or chemical reactions.

Water Treatment Methods:

  • Filtration: Filtration systems are commonly used to remove particulate matter, sediment, or debris from the water. Filters can range from simple strainers to more advanced filtration systems, depending on the specific water quality requirements and the level of filtration needed.
  • Water Softening: If the water has high levels of hardness minerals, such as calcium and magnesium, water softening methods may be necessary. Water softeners use ion exchange or other processes to remove the hardness minerals, which can help prevent scaling and reduce the risk of deposits in the compressor system.
  • Reverse Osmosis (RO): Reverse osmosis is a water treatment method that uses a semi-permeable membrane to remove dissolved solids, ions, and impurities from the water. RO systems can effectively reduce the total dissolved solids (TDS) and improve the overall water quality, making it suitable for water-lubricated compressors.
  • Chemical Treatment: In some cases, chemical treatments may be required to control water chemistry parameters, such as pH or alkalinity. Chemical additives can be used to adjust or stabilize water chemistry within the desired range, preventing corrosion, scaling, or other issues.

Water treatment requirements for water-lubricated compressors can vary depending on factors such as the compressor design, operating conditions, water source quality, and specific application requirements. It is essential to consult the compressor manufacturer’s recommendations and guidelines regarding water treatment. The manufacturer’s guidelines will provide specific information on water quality limits, treatment methods, and any required maintenance procedures related to water treatment.

Regular monitoring of water quality, including periodic testing and analysis, is recommended to ensure that the water treatment measures are effective and the desired water quality is maintained. Water treatment systems should be properly maintained and periodically serviced to ensure their optimal performance and prevent any potential issues that could affect the operation and longevity of water-lubricated compressors.

air compressor

How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?

Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:

Positive Effects:

  • Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
  • Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
  • Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.

Negative Effects:

  • Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
  • Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
  • System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.

Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.

air compressor

What Maintenance Is Required for Water-Lubricated Air Compressors?

Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:

  1. Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
  2. Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
  3. Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
  4. Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
  5. Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
  6. Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
  7. Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.

Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.

water_lubrication_air_compressorwater_lubrication_air_compressor
editor by lmc 2025-02-24

China Standard CHINAMFG factory oil free rotary Screw air compressor with CE and ISO air compressor oil

Product Description

Industrial Silent/Mute Medical Dry Oil Free Oilless Direct Drive Rotary Double Screw Type Air Compressor Advantages

1.Clean air 100% oil-free, class 0 oil free air according to ISO8537-1  
 
2.Adopt GHH air end made in Germany
 
3.Technology patent used in oil free compressed air system
 
4.Significant energy saving, environmental-friendly and pollution-free
 
5.Low operation and maintenance cost
 
6.Powerful MAM microcomputer controller and touch screen
 
7.Designed especially for medical, pharmacy, instrument, coating, chemical industry and food processing, etc. 

DENAIR Dry Type Oil Free Screw Air Compressor In Hannover Messe 2017
 

DENAIR Class 0 Certification

Comparison between dry oil free compressor and lubricated screw air compressor

Dry Type Oil-free Air Compressor Technical Parameters

Model Maximum working pressure Capacity(FAD)* Installed
motor
power
Cooling Method Noise Level** Dimensions
(mm)
Weight Air  Outlet Pipe Diameter
50 Hz 60 Hz
bar(e) psig m³/min cfm m³/min cfm kW hp dB(A) L W H kG
DWW-55 7 102 9.35 330 8.06 285 55 75 Air Cooling W-water Cooling 74 2000 1200 1650 1900 G1-1/2″
8 116 9.17 324 8.04 284 55 75 74 2000 1200 1650 1900 G1-1/2″
10 145 8.11 286 7.05 249 55 75 74 2000 1200 1650 1900 G1-1/2″
DWW-55W 7 102 9.35 330 8.06 285 55 75 74 2000 1200 1650 1800 G1-1/2″
8 116 9.17 324 8.04 284 55 75 74 2000 1200 1650 1800 G1-1/2″
10 145 8.11 286 7.05 249 55 75 74 2000 1200 1650 1800 G1-1/2″
DWW-75 7 102 12.71 449 11.56 408 75 100 74 2000 1200 1650 2100 DN50
8 116 11.78 416 11.53 407 75 100 74 2000 1200 1650 2100 DN50
10 145 11.57 409 10.11 357 75 100 74 2000 1200 1650 2100 DN50
DWW-75W 7 102 12.71 449 11.56 408 75 100 74 2000 1200 1650 2000 DN50
8 116 11.78 416 11.53 407 75 100 74 2000 1200 1650 2000 DN50
10 145 11.57 409 10.11 357 75 100 74 2000 1200 1650 2000 DN50
DWW-90 7 102 14.6 515 13.61 480 90 120 76 2800 1800 1860 2800 DN50
8 116 14.32 506 13.47 476 90 120 76 2800 1800 1860 2800 DN50
10 145 13.55 478 12.5 441 90 120 76 2800 1800 1860 2800 DN50
DWW-90W 7 102 14.6 515 13.61 480 90 120 76 2800 1800 1860 2180 DN50
8 116 14.32 506 13.47 476 90 120 76 2800 1800 1860 2180 DN50
10 145 13.55 478 12.5 441 90 120 76 2800 1800 1860 2180 DN50
DWW-110 7 102 20.27 716 N/A*** N/A*** 110 150 78 2800 1800 1860 3200 DN65
8 116 19.03 672 N/A*** N/A*** 110 150 78 2800 1800 1860 3200 DN65
10 145 16.65 588 15.57 550 110 150 78 2800 1800 1860 3200 DN65
DWW-110W 7 102 20.27 716 N/A*** N/A*** 110 150 78 2800 1800 1860 3050 DN65
8 116 19.03 672 N/A*** N/A*** 110 150 78 2800 1800 1860 3050 DN65
10 145 16.65 588 15.57 550 110 150 78 2800 1800 1860 3050 DN65
DWW-132 7 102 23.94 845 20.09 709 132 175 78 2800 1800 1860 3340 DN65
8 116 22.47 793 19.87 702 132 175 78 2800 1800 1860 3340 DN65
10 145 20.19 713 N/A*** N/A*** 132 175 78 2800 1800 1860 3340 DN65
DWW-132W 7 102 23.94 845 20.48 723 132 175 78 2800 1800 1860 3170 DN65
8 116 22.47 793 20.26 715 132 175 78 2800 1800 1860 3170 DN65
10 145 20.19 713 19.82 700 132 175 78 2800 1800 1860 3170 DN65
DWW-160 7 102 27.26 962 25.47 899 160 215 78 2800 1800 1860 3700 DN65
8 116 25.86 913 25.17 889 160 215 78 2800 1800 1860 3700 DN65
10 145 23.87 843 23.18 819 160 215 78 2800 1800 1860 3700 DN65
DWW-160W 7 102 27.26 962 25.47 899 160 215 78 2800 1800 1860 3300 DN65
8 116 25.86 913 25.17 889 160 215 78 2800 1800 1860 3300 DN65
10 145 23.87 843 23.8 819 160 215 78 2800 1800 1860 3300 DN65
DWW-185 7 102 30.19 1066 28.88 1571 185 250 78 2800 1800 1860 3900 DN65
8 116 29.53 1043 28.3 999 185 250 78 2800 1800 1860 3900 DN65
10 145 27.2 960 27.17 960 185 250 78 2800 1800 1860 3900 DN65
DWW-185W 7 102 30.19 1066 28.88 1571 185 250 78 2800 1800 1860 3460 DN65
8 116 29.53 1043 28.3 999 185 250 78 2800 1800 1860 3460 DN65
10 145 27.2 960 27.17 960 185 250 78 2800 1800 1860 3460 DN65
DWW-200W 7 102 36.41 1286 31.14 1100 200 270 78 3100 2150 2200 4300 DN100
8 116 33.86 1196 30.52 1078 200 270 78 3100 2150 2200 4300 DN100
10 145 30.35 1071 28.82 1018 200 270 78 3100 2150 2200 4300 DN100
DWW-220W 7 102 38.99 1377 37.54 1325 220 300 78 3100 2150 2200 4500 DN100
8 116 37.93 1339 36.78 1299 220 300 78 3100 2150 2200 4500 DN100
10 145 33.79 1193 31.08 1097 220 300 78 3100 2150 2200 4500 DN100
DWW-250W 7 102 47.26 1669 41.53 1466 250 350 78 3100 2150 2200 4550 DN100
8 116 43.31 1529 40.69 1437 250 350 78 3100 2150 2200 4550 DN100
10 145 38.88 1373 37.43 1322 250 350 78 3100 2150 2200 4550 DN100
DWW-280W 7 102 51.04 1802 N/A*** N/A*** 280 375 80 3400 2400 2200 4800 DN100
8 116 47.24 1668 N/A*** N/A*** 280 375 80 3400 2400 2200 4800 DN100
10 145 43.26 1528 41.4 1462 280 375 80 3400 2400 2200 4800 DN100
DWW-315W 7 102 52.03 1837 N/A*** N/A*** 315 425 80 3400 2400 2200 5000 DN100
8 116 51.04 1802 N/A*** N/A*** 315 425 80 3400 2400 2200 5000 DN100
10 145 47.18 1666 N/A*** N/A*** 315 425 80 3400 2400 2200 5000 DN100

Low Pressure Dry Type Oil-free Air Compressor Technical Parameters

Model Maximum working pressure Capacity(FAD)* Installed
motor
power
Cooling Method Noise Level** Dimensions
(mm)
Weight Air
Outlet Pipe Diameter
50 Hz 60 Hz
bar(e) psig m³/min cfm m³/min cfm kW hp dB(A) L W H kG
DWL-55-2 2.5 37 15.33 541 14.4 508 55 75 Air Cooling W-water Cooling 69 2100 1500 1790 2500 DN100
DWL-55-3 3.5 51 12.78 451 10.85 383 55 75 69 2100 1500 1790 2500 DN100
DWL-75-2 2.5 37 19.92 703 19.85 701 75 100 69 2100 1500 1790 2650 DN100
DWL-75-3 3.5 51 16.3 575 15.86 560 75 100 69 2100 1500 1790 2650 DN100
DWL-90-2 2.5 37 26.07 921 26.28 928 90 120 72 2800 1800 1860 2750 DN100
DWL-90-3 3.5 51 19.54 690 18.3 646 90 120 72 2100 1500 1790 2750 DN100
DWL-110(W)-2 2.5 37 33.16 1171 29.82 1053 110 150 72 3100 2150 2200 3500 DN150
DWL-110(W)-3 3.5 51 25.6 904 23.9 884 110 150 72 2800 1800 1860 3000 DN150
DWL-132(W)-2 2.5 37 40.24 1421 36.99 1271 132 175 72 3100 2150 2200 3600 DN150
DWL-132(W)-3 3.5 51 27.23 961 29.43 1039 132 175 72 2800 1800 1860 3100 DN150
DWL-160(W)-2 2.5 37 49.42 1745 45.2 1596 160 215 76 3100 2150 2200 3900 DN150
DWL-160(W)-3 3.5 51 35.75 1262 35.12 1240 160 215 76 3100 2150 2200 3800 DN150
DWL-185(W)-2 2.5 37 56.02 1989 52.71 1861 185 250 79 3400 2400 2200 4100 DN150
DWL-185(W)-3 3.5 51 42.21 1490 40.28 1422 185 250 79 3400 2400 2200 4000 DN150

*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) TBD-To Be Discussed
****) W-Water cooling

DENAIR Factory

Why Choose DENAIR ?
1.Original Germany AERZEN/DENAIR air end,larger air delivery,lower noise.

2. Oil free screw air compressor Pass CE, ISO9001 Quality Certification

3. One of 3 biggest air compressor manufacturer in China

4. Complete before-on-after sales service

5. Immediate reply or solution by email or call
6.Special oil gas separator with patents

7.High efficiency motor, up to 96%

FAQ

Q1: Are you factory or trade company?  
A1: We are factory.

Q2: What the exactly address of your factory? 
A2: Our company is located in No. 6767, Tingfeng Rd. Xihu (West Lake) Dis.n District, ZheJiang  201502, China
And our factory is located in No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China  

Q3: Warranty terms of your machine? 
A3: Two years warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines? 
A4: Yes, of course.

Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days

Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome

  /* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

air compressor

What Are the Key Components of a Water-Lubrication System in Compressors?

A water-lubrication system in compressors typically consists of several key components that work together to provide lubrication and cooling to the compressor. Here’s a detailed explanation of the key components of a water-lubrication system in compressors:

Water Supply:

  • Water Source: The water-lubrication system requires a water source that provides clean and suitable water for lubrication. The water can be sourced from various places such as municipal water supply, well water, or treated water from a dedicated water treatment system.
  • Water Inlet: The water inlet is the entry point where water enters the compressor’s lubrication system. It may include valves, filters, or other components to regulate and control the water flow.

Lubrication System:

  • Water Jackets: Water jackets are channels or passages built into the compressor’s housing or cylinder walls. These jackets allow water to circulate and come into direct contact with the compressor’s moving parts, providing lubrication and cooling. The water jackets help dissipate heat generated during compression and prevent excessive temperatures that could damage the compressor.
  • Water Pump: The water pump is responsible for circulating water through the water jackets and the entire lubrication system. It provides the necessary pressure to ensure adequate water flow and distribution to the compressor’s components.
  • Flow Control Devices: Flow control devices, such as valves or flow restrictors, are often included in the water-lubrication system to regulate and control the water flow rate. These devices help maintain optimal water pressure and flow throughout the system, ensuring effective lubrication and cooling.
  • Water Filters: Water filters are used to remove impurities, sediment, or debris from the water before it enters the lubrication system. They help prevent blockages, protect the compressor’s components from damage, and maintain the quality of the water used for lubrication.
  • Water Separator: A water separator is a component that removes excess water, moisture, or condensate from the compressed air. It ensures that the compressed air leaving the compressor is dry and free from excess water content, preventing potential issues such as corrosion or contamination downstream.

Control and Monitoring:

  • Temperature Sensors: Temperature sensors are used to monitor the temperature of the water and the compressor components. They provide feedback to the control system, allowing for adjustments in water flow or cooling measures if required to maintain optimal operating conditions.
  • Pressure Sensors: Pressure sensors are employed to monitor the water pressure within the lubrication system. They help ensure that the water flow and pressure are within the desired range, allowing for proper lubrication and cooling of the compressor.
  • Control System: A control system, which may include a combination of sensors, valves, and controllers, is responsible for regulating and maintaining the operation of the water-lubrication system. It can monitor various parameters, such as temperature, pressure, and flow, and make adjustments as needed to ensure efficient and safe operation.

Regular maintenance, inspection, and monitoring of the key components of the water-lubrication system are essential to ensure its proper functioning and to prevent any issues that could affect the performance and longevity of the compressor.

air compressor

Are There Any Restrictions on the Type of Water Used in Water-Lubricated Compressors?

When it comes to water-lubricated compressors, there are certain restrictions and considerations regarding the type of water that can be used. Here’s a detailed explanation of the restrictions on the type of water used in water-lubricated compressors:

Water Quality:

  • Cleanliness: The water used in water-lubricated compressors should be clean and free from excessive impurities or contaminants. Impurities like sediment, minerals, or debris can cause blockages, wear, or damage to the compressor components. It is important to use water that meets the cleanliness requirements specified by the manufacturer.
  • Chemical Composition: The chemical composition of the water can also be a factor to consider. Water with high mineral content or hardness can lead to scale formation, which can affect the performance and lifespan of the compressor. Water treatment methods, such as water softening or filtration, may be necessary to maintain the desired water quality.

Water Temperature:

  • Freezing Point: In cold climates, it is important to ensure that the water used in the compressor’s lubrication system does not freeze. Freezing can cause operational issues and damage to the equipment. The water temperature should be maintained above freezing point through insulation, heating, or other suitable methods.
  • Temperature Range: Water-lubricated compressors may have specific temperature requirements to ensure optimal operation and lubrication. Operating the compressor with water temperatures outside the recommended range can affect its performance and lifespan. It is important to adhere to the manufacturer’s guidelines regarding the acceptable temperature range for the water used.

Water Treatment:

  • Water Treatment Systems: Depending on the quality of the available water supply, it may be necessary to use water treatment systems to ensure the water meets the required standards. Water treatment systems can help remove impurities, control chemical composition, and maintain the desired water quality for effective lubrication and cooling.
  • Water Treatment Frequency: Regular maintenance and monitoring of the water treatment systems are essential to ensure their effectiveness. The frequency of water treatment, such as filtration or chemical treatment, may vary depending on the specific conditions and the water quality in the area.

Manufacturer Recommendations:

  • Consulting the Manufacturer: It is important to consult the manufacturer’s guidelines and recommendations regarding the type of water to be used in water-lubricated compressors. Manufacturers may specify the acceptable water quality parameters, treatment methods, or restrictions to ensure optimal performance and longevity of the compressor.

By considering the cleanliness, chemical composition, temperature, and appropriate water treatment measures, the type of water used in water-lubricated compressors can be optimized to meet the requirements specified by the manufacturer. Adhering to these restrictions helps ensure efficient and reliable operation of the compressor while minimizing the risk of component damage or performance issues.

air compressor

Are Water-Lubricated Air Compressors Suitable for Food and Beverage Industries?

Water-lubricated air compressors can be highly suitable for the food and beverage industries due to several reasons:

  1. Food-grade lubrication: Water is a natural and food-grade lubricant. It does not introduce harmful contaminants or chemicals into the production process, ensuring the safety and quality of food and beverage products. Water lubrication eliminates the risk of oil contamination in food products that can occur with oil-lubricated compressors.
  2. Compliance with hygiene standards: The food and beverage industries have strict hygiene standards and regulations. Water-lubricated air compressors align with these standards as water is a clean and sanitary lubricant. It minimizes the risk of cross-contamination and helps maintain a hygienic production environment.
  3. Reduced risk of product contamination: Water lubrication eliminates the possibility of oil carryover or oil vapor entering the compressed air system. This reduces the risk of oil contamination in food and beverage products, ensuring their purity and quality.
  4. Improved product shelf life: Oil-lubricated compressors can release oil aerosols or vapors that may negatively affect the taste, odor, or quality of food and beverage products. Water-lubricated compressors eliminate this concern, contributing to improved product shelf life and maintaining the desired sensory attributes.
  5. Easy cleanup and maintenance: Water lubrication simplifies cleanup and maintenance procedures in food and beverage production facilities. Water does not leave behind sticky residues or require extensive cleaning processes. It facilitates faster and more efficient cleaning, reducing downtime and improving overall productivity.
  6. Environmental friendliness: Water is a sustainable and environmentally friendly lubricant choice. It is non-toxic, biodegradable, and does not contribute to air or water pollution. Using water-lubricated air compressors aligns with the sustainability goals of the food and beverage industries.

Considering these factors, water-lubricated air compressors are well-suited for the food and beverage industries, ensuring compliance with hygiene standards, preventing product contamination, and promoting a safe and sustainable production environment.

water_lubrication_air_compressorwater_lubrication_air_compressor
editor by lmc 2025-02-24

China Hot selling Permanent Magnetic Frequency Adjustable Screw Air Compressor with Good quality

Product Description

Permanent magnetic frequency adjustable screw air compressor

Advantages of twin screw main machine :
1. Adopt the most advanced technical speed regulating electric motor-permanent magnetic motor, efficiency can be up to 97%, higher by 3%-4% than common frequency conversion device and motors type, saving energy obviously.
2. Permanent magnetic motor and the screw compression main devise adopt embedded integrated direct-connecting structure, without coupling part or transmission gear, ensure 100% transmission efficiency.
3. Permanent magnetic electric motor is without motor bearing or sleeve, so no need lubricating grease, no concern alignment problem, compact structure, convenient use and maintenance.
4. The whole machine work in frequency conversion state, and can operate frequency modulation according to the client’s actual requirement of air consumption, realizing high efficiency and energy saving.
5. Machine starting on frequency conversion state, greatly reducing the impact to the power grid equipment, avoiding of damage to the electric equipment, and saving electric energy when starting.
6. No need to set working pressure up and bottom limit value, can operate by regulating the frequency at the setting pressure point to stabilize the pressure, so can save electric energy by 10%-15%.
7. Compared with the fixed speed compressor, our compressor can save energy by 30%; compared with the common frequency compressor, our compressor can save energy by 5%-10%.

Advantages of the whole air compressor unit:
1. Approved by ISO9001certificate, SGS, CE and etc..
2. Adopt world famous brand of twin-screw main machine, high efficiency, reliable and long use life.
3. Adopt world famous brand of air intake filter, oil filter, air and oil separator, realize high filtration accuracy, compressed air oil content under 3ppm, reach to international advanced standard level.
4. Equip with the most advanced air control system. Adopt air intake valve, intelligent control system and pressure sensor combined control method, can operate by ON and OFF 2 point, stepless air capacity control system, time-delay stop and automatically start device 3 air capacity control method, can meet different clients demand.
5. Intelligent microcomputer control system, Chinese and English language operation interface, malfunction display, alarm and machine stop automatically.
6. Adopt high quality and world famous brand of main components, like UK APD oil filter, America AMOT temperature controlling valve, SCHNEIDER electric parts and etc., high efficiency, reliable and long use life.

Technical parameter of CHINAMFG air compressor:

Model Exhause pressure (Mpa) Air displacemen (m3/min) Power (Kw) Noise (dBa) Dimensions (mm) Outlet pipe size Weight (Kg)
TKLYC-7F 0.7/0.8/1.0 1.23/1.16/1.02 7.5 65±3 840*670*925 G3/4 350
TKLYC-11F 0.7/0.8/1.0 1.65/1.62/1.4 7.5 65±3 1000*820*1145 G3/4 390
TKLYC-15F 0.7/0.8/1.0 2.65/2.24/2.1 15 65±3 1300*850*1257 G1 410
TKLYC-18F 0.7/0.8/1.0 3.1/3.0/2.7 18.5 65±3 1300*850*1257 G1 440
TKLYC-22F 0.7/0.8/1.0 3.8/3.7/3.3 22 65±3 1300*850*1258 G1 650
TKLYC-30F 0.7/0.8/1.0 5.3/5.1/4.5 30 68±3 1600*1100*1430 G1 1/2 800
TKLYC-37F 0.7/0.8/1.0 6.7/6.5/5.7 37 68±3 1600*1100*1430 G1 1/2 850
TKLYC-45F 0.7/0.8/1.0 8.6/8.0/7.1 45 68±3 1600*1100*1430 G1 1/2 900
TKLYC-55F 0.7/0.8/1.0 10.3/10.1/9.3 55 72±3 1750*1150*1500 DN50 1650
TKLYC-75F 0.7/0.8/1.0 14.0/13.5/12.5 75 72±3 1750*1150*1500 DN50 1800
TKLYC-90F 0.7/0.8/1.0 17.2/15.9/14.0 90 72±3 2000*1150*1680 DN50 1950
TKLYC-110F 0.7/0.8/1.0 21.4/19.9/18.1 110 73±3 2300*1540*1900 DN80 2500
TKLYC-132F 0.7/0.8/1.0 24.6/23.8/22.1 132 73±3 2300*1540*1900 DN80 2600
TKLYC-160F 0.7/0.8/1.0 28.7/27.1/25.2 160 75±3 2900*1540*2120 DN80 3600
TKLYC-185F 0.7/0.8/1.0 33.5/30.5/27.0 185 76±3 3100*1940*2389 DN80 4200
TKLYC-200F 0.7/0.8/1.0 36.5/33.5/30.6 200 78±3 3100*1940*2389 DN100 4400
TKLYC-250F 0.7/0.8/1.0 45.3/43.0/38.1 250 78±3 3400*2050*2330 DN100 4900

Our factory and workshop

After sales service:
1. Providing professional air compression program designing for free.
2. Providing our factory original machine parts at lowest price after machine sales.
3. Providing training and guidance for free, customers can send their staff to our factory to learn how to operate the machines.
4. Warranty period: the screw main machine is 1 year, the bearing is 1 year, the wear parts of air intake valve, electric components, electromagnetic valve, rate valve are 6 months
5. The air filter, oil filter, oil-water separator, lubricating oil, rubber parts and etc. are not included in warranty range.

Certification and patents of our air compressor

 

FAQ:
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: Warranty terms of your machine? 
A2: One year warranty for the machine and technical support according to your needs.
Q3: Will you provide some spare parts of the machines? 
A3: Yes, of course.
Q4: How long will you take to arrange production? 
A4: 380V 50HZ we can delivery the goods within 20 days. Other electricity or other color we will delivery within 30 days.
Q5: Can you accept OEM orders? 
A5: Yes, with professional design team, OEM orders are highly welcome!

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Air Cooling
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Twin-Screw Compressor
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What are the key components of an air compressor system?

An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:

1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.

2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.

3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.

4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.

6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.

7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.

8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.

9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.

10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.

These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.

China Hot selling Permanent Magnetic Frequency Adjustable Screw Air Compressor   with Good qualityChina Hot selling Permanent Magnetic Frequency Adjustable Screw Air Compressor   with Good quality
editor by CX 2024-02-24

China supplier 7.5kw 10HP Screw Air Compressor Rotary Screw Type Air Compressors with Dryer and Tank with Great quality

Product Description

7.5KW 10Hp Screw Air Compressor Rotary Screw Type Air Compressors With Dryer and Tank

 

Main Features:

1. The flexible belt will be automatically tensioned in use. Through adjusting the tension, minimize the loss of pressure and power, to enhance the efficiency of compression.

2. Using the precise spin-oil separator and special two-pole buffer separation, it can minimize the oil consumption, guarantee the outlet gas purity, and extend the lifetime of filter elements.

3.  With the toothed V-belt, it has good heat dissipation, long life, higher gear drive and transmission efficiency, as high as over 98%.

Oil FilterGood Quality filters ensure longer working life and save the maintenance time and cost.

Stainless Steel Hoses: High and low temperature resistant, high pressure resistant. 

Compressed Air Vessel: Reduction of pressure drops and energy costs, quality air with low oil content.

Air End: Imported DLOL air end, advanced profile design. 

Electric Motor: Premium efficiency Totally TEFC IP54/IP55 motor (Class F insulation) protects against dust and chemicals etc.

Air Filter: Two-stage dust removal and filtering system with efficiency of up to 99.9% even in heavy-duty environment. 

Cooler: High quality aluminum material, alternating expression cooler fins, ensure the perfect radiating effect.

Technical parameters:

Our workshop:

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Free Spare Parts
Warranty: One Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China supplier 7.5kw 10HP Screw Air Compressor Rotary Screw Type Air Compressors with Dryer and Tank   with Great qualityChina supplier 7.5kw 10HP Screw Air Compressor Rotary Screw Type Air Compressors with Dryer and Tank   with Great quality
editor by CX 2024-02-22

China wholesaler Hf12/10 (K) Screw Air Compressor for Urban Construction air compressor for sale

Product Description

Product Description

Features

1. Main engine: large-diameter rotor design. The main engine and diesel engine are directly connected through a highly elastic coupling. There is no speed-increasing gear in the middle. The main engine speed is the same as that of the diesel engine. It has higher efficiency, better reliability and longer life.

2. Diesel engine: Cummins, CHINAMFG and other CHINAMFG domestic and foreign brands of diesel engines are selected, which meet the national II emission requirements. With strong power, low fuel consumption, and nationwide after-sales service system, users can get rapid and comprehensive services.

3. The air volume control system is simple and reliable. According to the size of the air volume, the air intake volume is automatically adjusted from 0 to 100%, and the diesel throttle is automatically adjusted at the same time, which greatly saves diesel oil.

4. The microcomputer intelligently monitors air compressor exhaust pressure, exhaust temperature, diesel engine speed, oil pressure, water temperature, fuel tank level and other operating parameters.

5. Multi-stage air filter, suitable for dusty working environment. Multi-stage fuel filter, suitable for the current status of domestic oil quality. Oversized oil-water cooler, suitable for high temperature and plateau environments.

6. Spacious maintenance and repair door, all parts needed to be maintained are within easy reach. The maintenance of air filters, oil filters, fuel tanks, batteries and oil coolers is easy and convenient, reducing downtime.

7. Easy to move, it can still move flexibly under the harsh terrain conditions. Each compressor is equipped with lifting rings for safe and convenient lifting and transportation.

Application

It is widely used in highway, railway, mining, water conservancy, shipbuilding, urban construction, energy and other industries.

Technical Data

Model

HF12/10(K)

Air displacement

12m3/min

Air pressure

10bar

Engine model

Yuchai 150HP

Rotation speed

2960rpm

Cylinder Qty

6

Fuel quantity

60L

Dimension

3650*1880*2060mm

Weight

2380kg

Delivery

Working Site

Company Introduction

CHINAMFG Group established in 1998 is a key enterprise in the industry of geological exploration and water well field, with the ability to research,manufacture and market. Now, the Group pursues high standard manufacturing and qualified products. It has more than 20 species such as water well drilling rig, core drilling rig, engineering drilling rig, DTH drilling rig, horizontaldirectional drilling rig, etc. These machines are mainly used in geological prospecting, exploration of railway and highway engineering, mining, SPT, water well, geothermal well etc. Some of them won the Scientific and Technical Advance Prize or the National Scientific Research Achievement Prize. All the products have passed the quality system certification of ISO9001:2000 and are national inspection-free products.

1. More than 20 years of experience 

The factory is located in ZheJiang Province, China. We are very welcome to visit our factory. If
you need it, we will arrange a pick-up.
2.Top production team
The transportation and packaging will be packaged in international standards. If you have special packaging requirements, we will give you the most suitable solution.
3.Our Service
– New machine provides technical trair.
– Once anything goes wrong with the machine by normal using, our technical person must appear at the first time no matter where you are.
– When the machine should be maintained, you will receive the reminding from us.
– According to different geological conditions, we will recommend different construction plans for you
– Remind you which are wearing parts, so you can prepare enough.
– 24 hours respond to your quality problem.

FAQ

1, Are you trading company or manufacturer?

We are professional manufacturer, and our factory mainly produce water well drilling rig, core drilling rig, DTH drilling rig, piling rig, etc. Our products have been exported to more than 50 countries of Asia, South America, Africa, and get a good reputation in the world.

2, Are your products qualified?
Yes, our products all have gained ISO certificate,and we have specialized quality inspection department for checking every machine before leaving our factory.

3, How about your machine quality?
All of our machines hold the ISO, QC and TUV certificate, and each set of machine must pass a great number of strict testing in order to offer the best quality to our customers.

4, Do you have after service?
Yes, we have special service team which will offer you professional guidance. If you need, we can send our engineer to your worksite and provid the training for your staff.

5, What about the qaulity warranty?
We offer one-year quality warranty for machines’ main body.

6, How long can you deliver the machine?
Generally, we can deliver the machine in 7 days.
 

Our Customers


  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: Diesel Engine
Structure Type: Closed Type
Installation Type: Movable Type
Type: Twin-Screw Compressor

air compressor

Can air compressors be used for cleaning and blowing dust?

Yes, air compressors can be effectively used for cleaning and blowing dust in various applications. Here’s how air compressors are utilized for these purposes:

1. Cleaning Machinery and Equipment:

Air compressors are commonly used for cleaning machinery and equipment in industries such as manufacturing, automotive, and construction. Compressed air is directed through a nozzle or blowgun attachment to blow away dust, debris, and other contaminants from surfaces, crevices, and hard-to-reach areas. The high-pressure air effectively dislodges and removes accumulated dust, helping to maintain equipment performance and cleanliness.

2. Dusting Surfaces:

Air compressors are also employed for dusting surfaces in various settings, including homes, offices, and workshops. The compressed air can be used to blow dust off furniture, shelves, electronic equipment, and other objects. It provides a quick and efficient method of dusting, especially for intricate or delicate items where traditional dusting methods may be challenging.

3. Cleaning HVAC Systems:

Air compressors are utilized for cleaning HVAC (Heating, Ventilation, and Air Conditioning) systems. The compressed air can be used to blow dust, dirt, and debris from air ducts, vents, and cooling coils. This helps improve the efficiency and air quality of HVAC systems, preventing the buildup of contaminants that can affect indoor air quality.

4. Blowing Dust in Workshops:

In workshops and garages, air compressors are often used to blow dust and debris from workbenches, power tools, and work areas. Compressed air is directed to blow away loose particles and maintain a clean and safe work environment. This is particularly useful in woodworking, metalworking, and other trades where dust and debris can accumulate during the manufacturing or fabrication processes.

5. Cleaning Electronics and Computer Equipment:

Air compressors are employed for cleaning electronics and computer equipment. The compressed air is used to blow dust and debris from keyboards, computer cases, circuit boards, and other electronic components. It helps in preventing overheating and maintaining the proper functioning of sensitive electronic devices.

6. Industrial Cleaning Applications:

Air compressors find extensive use in industrial cleaning applications. They are employed in industrial settings, such as factories and warehouses, for cleaning large surfaces, production lines, and equipment. Compressed air is directed through specialized cleaning attachments or air-operated cleaning systems to remove dust, dirt, and contaminants efficiently.

When using air compressors for cleaning and blowing dust, it is important to follow safety precautions and guidelines. The high-pressure air can cause injury if directed towards the body or sensitive equipment. It is advisable to wear appropriate personal protective equipment, such as safety glasses and gloves, and ensure that the air pressure is regulated to prevent excessive force.

Overall, air compressors provide a versatile and effective solution for cleaning and blowing dust in various applications, offering a convenient alternative to traditional cleaning methods.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China wholesaler Hf12/10 (K) Screw Air Compressor for Urban Construction   air compressor for saleChina wholesaler Hf12/10 (K) Screw Air Compressor for Urban Construction   air compressor for sale
editor by CX 2024-02-21

China Professional Best Price High Quality Pm VSD / VFD Rotary Screw Air Compressor Germany Air End AC Electric Stationary 7.5kw 15kw 22kw 37kw 45kw 55kw with CE & ISO wholesaler

Product Description

Product Description

 

Brief Introduction:
Air end: Germany Technology. 30 years designed lifetime.
Motor: 100% rare earth permanent magnet motor. 
Inverter: Chinese No. 1 inverter can save 30% energy.
Warranty: 5 years for the air end, and 2 years for the whole compressor. 
Delivery time: 7-15 days. 
After-sales service:we have our professional after-sales technician to instruct the installation of the whole screw air compressor.    
Certificate: CE/ISO9001/ASME
We offer free pipe and valves for installation and installation diagram

Product Parameters

Model Air Flow (m³/min) Motor Power Noise Outlet Diameter Dimension Weight
7bar 8bar 10bar 13bar kw dB inch W*D*H  (mm) kg
YP-10A 1.1  1.0  0.85  0.7  7.5 65 G1” 960*680*960 280
YP-15A 1.8  1.65  1.5  1.3  11 65 G1” 1050*830*1240 380
YP-20A 2.4  2.2  2.1  1.8  15 68 G1” 1050*830*1240 380
YP-25A 3.1  3.0  2.7  2.3  18.5 68 G1” 1200*830*1290 480
YP-30A 3.8  3.6  3.2  2.5  22 68 G1” 1200*830*1290 480
YP-40A 5.3  5.0  4.3  3.6  30 69 G11/2” 1300*1000*1540 710
YP-50A 6.6  6.2  5.7  4.6  37 69 G11/2” 1300*1000*1540 710
YP-60A 8.0  7.7  6.9  6.0  45 70 G11/2” 1500*1160*1700 990
YP-75A 10.5  9.8  8.7  7.3  55 70 G11/2” 1500*1160*1700 990
YP-100A 13.6  13.0  11.3  10.1  75 72 G2” 1700*1180*1800 1300
YP-125A 16.2  15.4  13.2  11.2  90 72 DN50 1850*1200*1900 1400
YP-150A 20.8  19.5  16.5  13.7  110 73 DN65 2250*1260*2055 1560
Remarks:
1. working ambinent temperature: -5ºC-45ºC;
2. exhausting air temperature ≤  working ambinent temperature +10ºC-15ºC;
3. starting mode: Y-△;
4. exhausting oil content: <3ppm;
5. certificate:  CE/ISO9001/ASME/SGS;
6. voltage:  380V/220V/230V/400V/440V/415V

 

Detailed Photos

Manufacturing center

Factory Quality Control Process
1.Installation inspection of the whole air compressor: check and confirm the whole machine according to the operation instructions and quality control standards. Main inspection items:
A . Confirm the nose and motor nameplates; 
B . Check whether there is oil leakage in the pipeline and oil circuit of the air compressor; C . the air compressor machine screw locking inspection..
2. Rotary screw type air compressor factory test machine, heat engine: test whether the air compressor operation parameters meet the requirements of customers, including voltage, current, working pressure, exhaust volume, etc.Air compressor factory before 48 hours of thermal test, stability confirmation.
3. 24 hours online after-sales service, one-to-1 online guidance installation, debugging, troubleshooting.

OUR TEAM

Gold customers

Exhibition

Air compressor use case

Rotary Screw type air compressor packaging process
1. Screw air compressor packaging is divided into 3 layers from inside to outside:
1) The first layer of protection: spray paint on the surface of the machine to protect the surface of the machine. The fouling pull film is wrapped around the surface of the machine to protect the surface of the paint.
2) The second layer of protection: anti-collision protection of the machine. On the basis of lacquer protection, anti-collision buffer cotton is used to protect the machine against collision.
3) The third layer of protection: the case adopts the overall packaging of the non-fumigation wooden case to protect the machine during transportation.
 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 5 Years for The Air End, and 2 Years for The Whole
Warranty: 2 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China Professional Best Price High Quality Pm VSD / VFD Rotary Screw Air Compressor Germany Air End AC Electric Stationary 7.5kw 15kw 22kw 37kw 45kw 55kw with CE & ISO   wholesaler China Professional Best Price High Quality Pm VSD / VFD Rotary Screw Air Compressor Germany Air End AC Electric Stationary 7.5kw 15kw 22kw 37kw 45kw 55kw with CE & ISO   wholesaler
editor by CX 2024-02-21

China best 30kw 8bar Kingair Water Lubricated Oil-Free Screw Air Compressor portable air compressor

Product Description

Product Description

Product Introduction

    The Airend of Kingair water lubricated Oil-free CHINAMFG adopts PEEK door rotor, aerospace grade stainless steel rotor and a new production process. Using nano-scale water filter core and Inlet reverse osmosis system, it can provide a stable and qualified lubricating water treatment system for the compressor. The oil-free machine system can change water without stopping according to the set water change cycle, reducing daily maintenance costs and making use more worry-free. The system is simple, reduces parts and failure points, and improves reliability. Low energy consumption, isothermal compression, higher volumetric efficiency, more than 15% energy saving than two-stage compression dry oil-free screw compressor.
 

Detailed Photos

Product Parameters

Model KAW-30A
Power(Kw) 30Kw
Pressure(Bar) 8Bar
Volume flow(m3/min) 5.12m3/min
Air Outlet 1 1/2”
Weight(kg) 1100Kg
Dimension(mm) 1550×1150×1500mm

 

 

 

Certifications

 

 

 

Packaging & Shipping

 

 

 

Installation Instructions

 

 

Company Profile

 

 

    ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.
   
    The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.
   
    Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.
   
    Each product of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.

 

FAQ

 

 

Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.

Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.

Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.

Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.

Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.

Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.

Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries.Such as India, UAE,South Africa, Saudi Arabia, Iraq, Pakistan,etc.

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on Line Technical Support
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Samples:
US$ 12800/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Are the Safety Considerations When Using Water-Lubricated Compressors?

When using water-lubricated compressors, it is important to prioritize safety to prevent accidents, ensure the well-being of personnel, and maintain the integrity of the equipment. Here’s a detailed explanation of the safety considerations:

  1. Electrical Safety: Compressed air systems, including water-lubricated compressors, often involve electrical components and connections. Ensure that the electrical systems are properly installed, grounded, and protected according to applicable electrical codes and regulations. Regularly inspect electrical components, such as motors, switches, and wiring, for any signs of damage or wear that could pose electrical hazards.
  2. Pressure Safety: Water-lubricated compressors can operate at high pressures, presenting potential hazards. Follow the manufacturer’s guidelines and ratings to ensure that the compressor is operated within its specified pressure limits. Install and maintain pressure relief valves to prevent overpressurization and ensure the safe release of excess pressure. Regularly inspect pressure gauges, fittings, and connections for leaks, damage, or signs of degradation.
  3. Heat and Cooling Safety: Compressed air systems generate heat during the compression process, and proper cooling is essential to maintain safe operating temperatures. Ensure that cooling mechanisms, such as water jackets or external cooling systems, are functioning correctly and provide adequate cooling capacity. Monitor and control the temperature of the compressed air and the cooling water to prevent overheating and minimize the risk of equipment damage or failure.
  4. Water Quality and Treatment: The quality of the water used for lubrication is crucial for the performance and safety of water-lubricated compressors. Impurities, contaminants, or minerals in the water can lead to corrosion, blockages, or reduced lubrication effectiveness. Implement appropriate water treatment or filtration systems to maintain the desired water quality. Regularly monitor water quality and perform necessary maintenance and treatment to prevent potential safety and performance issues.
  5. Maintenance and Inspection: Establish a routine maintenance and inspection program for the water-lubricated compressor system. Regularly inspect the compressor, water distribution system, filters, and other components for any signs of wear, damage, or deterioration. Follow the manufacturer’s recommended maintenance procedures, including lubrication, filter replacement, and system checks. Promptly address any identified issues to prevent safety hazards and maintain the reliable operation of the compressor.
  6. Training and Personal Protective Equipment (PPE): Proper training of personnel who operate and maintain water-lubricated compressors is essential for safety. Ensure that operators and maintenance personnel are trained on the safe operation of the equipment, emergency procedures, and hazard identification. Provide appropriate personal protective equipment (PPE), such as safety glasses, gloves, and hearing protection, to minimize the risk of injuries from potential hazards, including high-pressure water, rotating parts, or noise.

It is important to consult applicable safety regulations, codes, and guidelines specific to your location and industry when using water-lubricated compressors. Additionally, follow the manufacturer’s instructions, warnings, and safety recommendations provided with the equipment to ensure the safe operation of water-lubricated compressors and mitigate potential risks.

air compressor

What Is the Role of Filtration in Water-Lubricated Air Compressors?

Filtration plays a crucial role in water-lubricated air compressors, serving several important purposes. Here’s a detailed explanation of the role of filtration in water-lubricated air compressors:

Contaminant Removal:

  • Particle Filtration: Filtration systems in water-lubricated air compressors are designed to remove particles and contaminants from the water. These can include sediment, rust, debris, and other solid particles that may be present in the water supply. Removing these contaminants is essential to prevent blockages, clogging, and damage to the compressor components.
  • Oil Removal: In some cases, water used in compressors may contain traces of oil or hydrocarbons. Filtration systems can also help remove oil and hydrocarbon contaminants from the water, ensuring that the lubrication system remains clean and effective.

Protection of Components:

  • Lubrication System: Filtration prevents contaminants from reaching the lubrication system of water-lubricated air compressors. This helps maintain the cleanliness and integrity of the lubricant, ensuring optimal lubrication performance and minimizing wear on the compressor’s moving parts. Clean and filtered water can enhance the efficiency and lifespan of the compressor’s lubrication system.
  • Heat Exchangers and Cooling Systems: Water-lubricated compressors often rely on heat exchangers and cooling systems to regulate the temperature of the compressed air and the compressor itself. Filtration helps protect these components by preventing the accumulation of debris and contaminants that can hinder heat transfer and reduce the cooling efficiency. Clean water free from particles and contaminants promotes effective heat exchange and cooling.

Prevention of System Fouling:

  • Scaling and Deposits: Filtration systems also help prevent scaling and deposits that can occur when water with high mineral content or hardness is used. These deposits can accumulate on the internal surfaces of the compressor, heat exchangers, or other components, reducing their efficiency and potentially causing operational issues. By removing impurities and controlling mineral content, filtration minimizes the risk of scaling and deposits.

Extended Equipment Lifespan:

  • Component Protection: By effectively removing contaminants, filtration systems contribute to the protection and longevity of water-lubricated air compressor components. Clean and filtered water reduces the risk of component wear, corrosion, fouling, and blockages, ultimately extending the lifespan of the compressor and reducing maintenance and replacement costs.

Regular Maintenance and Monitoring:

  • Filter Replacement: Filtration systems require regular maintenance, including the replacement or cleaning of filters. The frequency of filter replacement depends on factors such as water quality, usage conditions, and the specific requirements of the compressor manufacturer. Regular maintenance ensures that the filtration system continues to effectively remove contaminants and protect the compressor components.
  • Monitoring Water Quality: Alongside filtration, monitoring the quality of the water used in water-lubricated compressors is essential. This can involve periodic water analysis, measurement of key parameters such as pH or conductivity, and visual inspections. Monitoring helps identify any changes in water quality or potential issues with the filtration system, allowing for timely maintenance or corrective actions.

In summary, filtration plays a critical role in water-lubricated air compressors by removing contaminants, protecting components, preventing system fouling, and extending equipment lifespan. By maintaining clean and filtered water, filtration systems contribute to the efficient operation, reliability, and longevity of water-lubricated compressors.

air compressor

How Is Water Quality Crucial for the Performance of These Compressors?

Water quality plays a crucial role in the performance of water-lubricated air compressors. The quality of the water used for lubrication directly impacts the efficiency, reliability, and lifespan of these compressors. Here are the key reasons why water quality is essential for optimal compressor performance:

  1. Lubrication effectiveness: Water serves as the lubricant in water-lubricated air compressors. The water forms a protective film between moving parts, reducing friction and wear. However, if the water contains impurities or contaminants, it can compromise the lubricating properties. Impurities like minerals, sediments, or dissolved solids can hinder the formation of an effective lubricating film, leading to increased friction and potential damage to the compressor components.
  2. Corrosion prevention: Water with high mineral content, such as hard water, can promote corrosion within the compressor system. Minerals like calcium and magnesium can react with metal surfaces, leading to rust, scale formation, and degradation of internal components. Corrosion compromises the structural integrity of the compressor, reduces its efficiency, and may result in costly repairs or even premature failure.
  3. Preventing blockages: Poor water quality can result in the accumulation of sediments, debris, or contaminants within the compressor system. These deposits can block water passages, filters, or valves, impeding the flow of water and affecting the overall performance of the compressor. Restricted water flow may lead to inadequate cooling, reduced lubrication, and compromised efficiency.
  4. Preventing fouling and fouling-related issues: Fouling refers to the accumulation of organic or inorganic deposits on heat transfer surfaces, such as heat exchangers or radiators, within the compressor system. Poor water quality can contribute to fouling, reducing heat transfer efficiency and impairing the cooling capacity of the compressor. This can result in elevated operating temperatures, decreased performance, and potential damage to the compressor.
  5. System cleanliness: Clean water is crucial for maintaining a clean and sanitary compressor system, especially in industries like food and beverage or medical applications. Contaminated water can introduce harmful bacteria, microorganisms, or particles into the compressor, posing a risk to product quality, safety, or patient well-being.

To ensure optimal performance and longevity of water-lubricated air compressors, it is important to monitor and maintain the quality of the water used for lubrication. Regular water analysis, proper filtration, and appropriate water treatment measures should be employed to remove impurities, control mineral content, and maintain the desired water quality. By ensuring clean and high-quality water, the compressor can operate efficiently, minimize the risk of component damage, and contribute to a reliable and safe compressed air system.

China best 30kw 8bar Kingair Water Lubricated Oil-Free Screw Air Compressor   portable air compressorChina best 30kw 8bar Kingair Water Lubricated Oil-Free Screw Air Compressor   portable air compressor
editor by CX 2024-02-21

China best Chinese CHINAMFG Factory Price Intelligent PLC Control High Quality CE Level Professional Electric Motor Powered Direct Screw Air Compressor with ISO Certification air compressor price

Product Description

BEEST—-AIR COMPRESSOR&SOLUTION

Moair Energy Conservation Durable Two Stage Screw Air Compressor with Double Permanent Magnet Motor

1. Company background

ZheJiang CHINAMFG International Trade Co., Ltd. is the senior partner of HangZhou CHINAMFG Compressor Co., Ltd , we are committed to the sales and after-sales service of air compressors in Southeast Asia, and have stores in Indonesia.
We are the professional manufacturer of the air compressor products of various types including the permanent-magnet synchronous variable-frequency series,permanent-magnet synchronous low-pressure series,permanent-magnet sunchronous two-stage compressors series,etc.
More than 10 years of professional screw compressors manufacturing technology,bringing the international first-class permanent magnet synchronous drive and control technologies.

2. Product introduction

Equipped with an IE3 motor, the direct drive rotary screw air compressor consists of a high-accuracy screw and high-quality casting, with a wide variable range of parameters.

3.Core components

Motor 

  • More stable: no mechanical transmission troubles
    There is no gear shaft in the air compressor and the effective permanent magnet motor and the male rotor are directly connected on 1 shaft without gear drive, which can eliminate pitting of gear or hidden troubles of tooth fracture.
    Without shaft coupling, 2 integrated PM motors directly drive 2 airends of the air compressor, avoiding the hidden troubles of shaft coupling failure.
  • More energy-savings: the airend is always in a smooth running state
    The 2 stage 3 phase permanent magnet rotary gear screw air compressor of CHINAMFG is powered by 2 independent PM motors and 2 independent inverters, which is intelligently controlled such as keep the airend running at a best level-pressure point by controlling discharge pressure and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of air compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency.
  • More effective: high-efficiency permanent magnet motor and no gear drive loss.
    With a motor of a high protection degree of IP54, it is more energy-saving and it can stay effective at low frequency and low speed.
  • More environment-friendly operation with lower noise
    No noise of motor bearings, gear meshing and coupling transmission.
  • More structure-compact
    The volume of PM motor is small and the structure is compact, which can save much space.

    4.Parameters

    5. Principle of energy-saving
     

    • Change the traditional induction motor with high-efficiency technology of permanent magnet rotary screw motor, thus reducing the consumption in transmission.
    • Powered by 2 independent PM motors and 2 independent inverters, the compressor is intelligently controlled such as keep the airend running at a best level-pressure point by controlling pressure of air flow and interstage pressure under the circumstance of different rotary speed and different pressure. The best running speed of compressor can be automatically calculated while running and then the compression ratio can be balanced by final match, which can keep the compressor in a best running state, thus obtaining the highest efficiency.
    • Because the gear ratio is fixed, point efficiency is emphasized in this case. That is to say, only with fixed rotary speed and rated pressure did it have the best specific power. When running in a state of variable speed and variable frequency, considering the fixed speed of gear, interstage pressure will not reach the best one. Rotational speed declining while energy consumption not declining at the same time, it is not suitable for running in variable speed and variable frequency state.

       

    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    After-sales Service: Online Service
    Warranty: One Year
    Lubrication Style: Lubricated
    Cooling System: Air Cooling
    Power Source: AC Power
    Cylinder Position: Vertical

    air compressor

    What is the impact of humidity on compressed air quality?

    Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

    1. Corrosion:

    High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

    2. Contaminant Carryover:

    Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

    3. Decreased Efficiency of Pneumatic Systems:

    Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

    4. Product Contamination:

    In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

    5. Increased Maintenance Requirements:

    Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

    6. Adverse Effects on Instrumentation:

    Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

    To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

    air compressor

    What is the energy efficiency of modern air compressors?

    The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

    Variable Speed Drive (VSD) Technology:

    Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

    Air Leakage Reduction:

    Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

    Efficient Motor Design:

    The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

    Optimized Control Systems:

    Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

    Air Storage and Distribution:

    Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

    Energy Management and Monitoring:

    Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

    It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

    Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

    air compressor

    What is the role of air compressor tanks?

    Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:

    1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.

    2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.

    3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.

    4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.

    5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.

    6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.

    Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.

    China best Chinese CHINAMFG Factory Price Intelligent PLC Control High Quality CE Level Professional Electric Motor Powered Direct Screw Air Compressor with ISO Certification   air compressor priceChina best Chinese CHINAMFG Factory Price Intelligent PLC Control High Quality CE Level Professional Electric Motor Powered Direct Screw Air Compressor with ISO Certification   air compressor price
    editor by CX 2024-02-19