Product Description
High Quality Screw Air compressor
Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, screw Air compressor,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements
The CHINAMFG is a volume -type gas compression machine with a volume of work volume. The compression of the gas is achieved by changes in volume, and the change of the volume is to achieve a rotation movement in the case with a pair of rotor of the compressor.
Basic structure of the screw air compressor: In the body of the compressor, a pair of intertwined spiral rotors are parallel. Usually, there is a rotor with convex teeth outside the ball, which is called yang rotor or yang screw. The rotor with concave teeth in the festival is called a pussy rotor or yin screw. Generally, the yang rotor is connected to the original motivation. Axial force. The cylindrical roller bearing at both ends of the rotor enables the rotor to achieve radial positioning and is underneath the radial force in the compressor. At both ends of the compressor body, a certain shape and size of the pores are opened respectively. One is used for inhalation, which is called the air intake; the other is used for exhaust, called the exhaust port.
Customized is accepted , Pls provide the following information to us :
1.Working Pressure : ____ Bar
2.Rated Power : _____ KW/HP
Do you really choose the right Screw compressor?
About Power Saving
1. The annual electricity bill for purchasing a 37KW ordinary screw air compressor is
37KWx24hx365 days x1. 2 (electric fee) xO. 6 (loading)
Power consumption is as high as 233.3366 million!
Power saving after switching to permanent magnet variable frequency screw air compressor:
23. 3366×30% save electric fee 7. 00.98 million!
Advantages of screw air compressor :
01.Advanced Medium Voltage Dual Stage Mainframe
1. Two-stage integrated design, oil mist spray cooling is used between stages, which reduces the temperature of the air, and the compression process is close to the most energy-saving isothermal compression. In principle, two-stage compression saves 5%-8% of energy compared to single-machine compression ;
2. It is suitable for the compression ratio matching of medium voltage, the leakage in the main engine is small, and the volumetric efficiency is high;
3. The bearing adopts imported heavy-duty bearing, which makes the force of the rotor better; the two-stage rotors are driven by helical gears respectively, so that each stage of the rotor has the best linear speed;
4. The third-generation asymmetric rotor technology, the tooth surface is processed by the German KAPP rotor grinder, creating a high-precision rotor, which is the first guarantee for the high efficiency and stability of the host.
02.High efficiency permanent magnet synchronous motor
1. IP54 protection grade, which is more stable and reliable than IP23 in harsh environment;
2. Low temperature rise design, higher efficiency, and extended the service life of the motor;
3. Use ceramic plated bearings to completely eliminate the influence of shaft current on bearings;
4. It is made of rare earth permanent magnet materials, with large torque and small current during startup and operation;
5. With reasonable magnetic field design and magnetic density distribution, the working frequency range of energy-saving motors is wider and the operating noise is low;
6. Cooperating with the operation of the frequency converter, the frequency conversion soft start is realized, which avoids the strong mechanical impact of the machine and equipment when the motor is started at full pressure, and is conducive
to protecting the mechanical equipment, reducing equipment maintenance and improving the reliability of the equipment.
03. Special valve group
1. Intake valve: It adopts a special normally closed butterfly valve for medium voltage, with a non-return function, stable operation, high precision of air volume control, built-in noise reduction design, low cavitation noise and long service life;
2. Minimum pressure maintenance valve: special valve for medium voltage, high pressure resistance, high temperature resistance, accurate opening pressure, ensuring stable pressure in the barrel, ultra-fast return to seat, strong sealing, ensuring no backflow of gas, low pressure loss and high efficiency ;
3. Temperature control valve: The unit is equipped with a mixed-flow temperature control valve to ensure that the unit is more convenient to start in a low temperature environment, and to ensure the oil supply of the unit at any time; by controlling the oil supply temperature of the main engine to ensure that the unit is in the best performance state;
4. Oil cut-off valve: special normally closed valve for medium voltage, controlled by the exhaust pressure of the machine head. When starting up, the valve opens quickly to ensure that the compressor is lubricated and warmed up as soon as possible; when shutting down, the valve prevents oil from being ejected from the intake end.
4.Advanced and reliable electric control system
1. Large-size color LCD touch screen, with good man-machine communication interface, touch screen with anti-mistouch and sleep function;
2. It adopts double frequency conversion system, which is more energy-saving. The frequency converter and the motor are perfectly matched, and the low frequency and high torque can output 180% of the rated torque;
3. According to the characteristics of medium voltage, a special program is developed, with multiple pressure sensors and multiple temperature sensors, which can comprehensively detect the operating status of the unit, and automatically control the machine status without special care;
4. Configure the Internet of Things, you can check the operating status of the unit on the mobile phone;
5. Independent air duct design, suitable for various working conditions.
5.Silent centrifugal fan
1. Adopt centrifugal fan, brand-new separate radial cooling fan design, with special cooler, better cooling effect and more energy saving;
2. Compared with axial flow fans, centrifugal fans have higher wind pressure and lower noise;
3. Using variable frequency fan control, the oil temperature is constant, prolonging the service life of lubricating oil;
4. Due to the high wind pressure, the cooler and the filter are less likely to be blocked.
6..High quality triple filter
1. The filtration area of the air filter exceeds 150% of the normal requirement, the inlet pressure loss is low, and the energy efficiency is good;2. The oil filter adopts a full-flow built-in pressure-bearing oil filter suitable for medium voltage conditions. The rated processing capacity of the oil filter is 1.3 times the circulating oil volume. The imported filter material and the design scheme of large margin are selected, which has high filtration precision and good durability.
3. The oil is divided into special customized oil, which is designed and developed for medium-pressure working conditions, with wide applicable pressure range, good separation effect and low operating pressure loss; imported glass fiber material is selected;
4. The design of the 3 filter positions is reasonable, the maintenance is convenient, and the downtime is reduced.
High quality and efficient coupling
1. The coupling is a torsional elastic coupling with a failure protection function, which can effectively damp and reduce the vibration and impact generated during operation;
2. The elastic body is only under pressure and can bear a larger load, and the drum-shaped teeth of the elastic body can avoid stress concentration.
Main Parameter
| Technical parameters of oil-free water-lubricated permanent magnet variable frequency screw compressor | ||||||||||||
| HYW-G | Working pressure | Exhaust volume | Power | Noise | Air outlet pipe diameter | Net weight | Dimensions(mm) | |||||
| Water lubricated series | bar | psig | (m3/min) | cfm | kW | hp | dB | kg | Length | Width | Height | |
| HYWV-7G | 7 | 102 | 0.7-1.2 | 24.7-42.4 | 7.5 | 10 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 |
| 8 | 116 | 0.6-1.1 | 21.2-38.8 | 7.5 | 10 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| 10 | 145 | 0.5-0.9 | 17.7-31.8 | 7.5 | 10 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| HYWV-11G | 7 | 102 | 1.0-1.6 | 35.3-56.5 | 11 | 15 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 |
| 8 | 116 | 0.9-1.5 | 31.8-53 | 11 | 15 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| 10 | 145 | 0.7-1.3 | 24.7-45.9 | 11 | 15 | 58±3 | G1″ | 500 | 1135 | 800 | 1000 | |
| HYWV-15G | 7 | 102 | 1.1-2 | 38.8-71 | 15 | 20 | 60±3 | G1″ | 550 | 1400 | 1000 | 1200 |
| 8 | 116 | 1-1.9 | 35.4-67.3 | 15 | 20 | 60±3 | G1″ | 550 | 1400 | 1000 | 1200 | |
| 10 | 145 | / | / | 15 | 20 | 60±3 | G1″ | 550 | 1400 | 1000 | 1200 | |
| HYWV-15G | 7 | 102 | / | / | 15 | 20 | 60±3 | G1″ | 550 | 1170 | 900 | 1100 |
| 8 | 116 | / | / | 15 | 20 | 60±3 | G1″ | 550 | 1170 | 900 | 1100 | |
| 10 | 145 | 0.9-1.6 | 31.8-56.6 | 15 | 20 | 60±3 | G1″ | 550 | 1170 | 900 | 1100 | |
| HYWV-18.5G | 7 | 102 | 1.8-3.1 | 63.6-109.5 | 18.5 | 25 | 61 ±3 | G1″ | 600 | 1400 | 1000 | 1200 |
| 8 | 116 | 1.6-2.8 | 56.5-98.9 | 18.5 | 25 | 61 ±3 | G1″ | 600 | 1400 | 1000 | 1200 | |
| 10 | 145 | 1.5-2.5 | 53-88.3 | 18.5 | 25 | 61±3 | G1″ | 600 | 1400 | 1000 | 1200 | |
| HYWV-22G | 7 | 102 | 2.2-3.7 | 77.7-130.7 | 22 | 30 | 61 ±3 | G1″ | 655 | 1400 | 1000 | 1200 |
| 8 | 116 | 2.0-3.4 | 70.6-120.1 | 22 | 30 | 61 ±3 | G1″ | 655 | 1400 | 1000 | 1200 | |
| 10 | 145 | 1.8-3.0 | 63.6-105.9 | 22 | 30 | 61 ±3 | G1″ | 655 | 1400 | 1000 | 1200 | |
| HYWV-30G | 7 | 102 | 3.1-5.2 | 109.5-183.6 | 30 | 40 | 64±3 | G11/2″ | 1150 | 1920 | 1170 | 1320 |
| 8 | 116 | 2.8-4.7 | 98.9-166 | 30 | 40 | 64±3 | G11/2″ | 1150 | 1920 | 1170 | 1320 | |
| 10 | 145 | 2.5-4.3 | 88.3-151.9 | 30 | 40 | 64±3 | G11/2″ | 1150 | 1920 | 1170 | 1320 | |
| HYWV-37G | 7 | 102 | 3.6-6.1 | 127.1-215.4 | 37 | 50 | 64±3 | G11/2″ | 1200 | 1920 | 1170 | 1320 |
| 8 | 116 | 3.3-5.6 | 116.5-197.8 | 37 | 50 | 64±3 | G11/2″ | 1200 | 1920 | 1170 | 1320 | |
| 10 | 145 | 3.0-5.0 | 105.9-176.6 | 37 | 50 | 64±3 | G11/2″ | 1200 | 1920 | 1170 | 1320 | |
| HYWV-45G | 7 | 102 | 4.5-7.5 | 158.9-264.9 | 45 | 60 | 66±3 | G11/2″ | 1320 | 1920 | 1170 | 1320 |
| 8 | 116 | 4.0-6.8 | 141.3-240.1 | 45 | 60 | 66±3 | G11/2″ | 1320 | 1920 | 1170 | 1320 | |
| 10 | 145 | 3.6-6.0 | 127.1-211.9 | 45 | 60 | 66±3 | G11/2″ | 1320 | 1920 | 1170 | 1320 | |
| HYWV-55G | 7 | 102 | 6.0-10.0 | 211.9-353.1 | 55 | 75 | 66±3 | DN50 | 1520 | 1930 | 1320 | 1535 |
| 8 | 116 | 5.4-9.0 | 191-317.8 | 55 | 75 | 66±3 | DN50 | 1520 | 1930 | 1320 | 1535 | |
| 10 | 145 | 4.6-7.8 | 162.4-275.5 | 55 | 75 | 66±3 | DN50 | 1520 | 1930 | 1320 | 1535 | |
| HYWV-75G | 7 | 102 | 7.8-13.0 | 275.5-459.1 | 75 | 100 | 70±3 | DN50 | 1620 | 1930 | 1320 | 1535 |
| 8 | 116 | 7.2-12.0 | 254.3-423.8 | 75 | 100 | 70±3 | DN50 | 1620 | 1930 | 1320 | 1535 | |
| 10 | 145 | 6.0-10.0 | 211.9-353.1 | 75 | 100 | 70±3 | DN50 | 1620 | 1930 | 1320 | 1535 | |
| HYWV-90G | 7 | 102 | 9.3-15.5 | 328.4-547.4 | 90 | 120 | 70±3 | DN50 | 1800 | 1930 | 1320 | 1535 |
| 8 | 116 | 8.4-14.0 | 296.6-494.4 | 90 | 120 | 70±3 | DN50 | 1800 | 1930 | 1320 | 1535 | |
| 10 | 145 | 7.5-12.5 | 264.9-414 | 90 | 120 | 70±3 | DN50 | 1800 | 1930 | 1320 | 1535 | |
| HYWV-110G | 7 | 102 | 12.0-20.0 | 423.8-706.3 | 110 | 150 | 72±3 | DN80 | 3100 | 2300 | 1600 | 1750 |
| 8 | 116 | 10.8-18.0 | 381.4-635.7 | 110 | 150 | 72±3 | DN80 | 3100 | 2300 | 1600 | 1750 | |
| 10 | 145 | 9.6-16.0 | 339-565 | 110 | 150 | 72±3 | DN80 | 3100 | 2300 | 1600 | 1750 | |
| HYWV-132G | 7 | 102 | 15.0-25.0 | 527.9-882.9 | 132 | 175 | 72±3 | DN80 | 3250 | 2300 | 1600 | 1750 |
| 8 | 116 | 13.8-23.0 | 487.3-812.2 | 132 | 175 | 72±3 | DN80 | 3250 | 2300 | 1600 | 1750 | |
| 10 | 145 | 12.0-20.0 | 423.8-706.3 | 132 | 175 | 72±3 | DN80 | 3250 | 2300 | 1600 | 1750 | |
| HYWV-160G | 7 | 102 | 16.2-27.0 | 572.1-953.5 | 160 | 215 | 72±3 | DN100 | 4500 | 2860 | 1600 | 1800 |
| 8 | 116 | 15.3-25.5 | 540.3-900.5 | 160 | 215 | 72±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| 10 | 145 | 14.4-24.0 | 508.5-847.6 | 160 | 215 | 72±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| HYWV-185G | 7 | 102 | 18.0-30.0 | 635.7-1059.4 | 185 | 250 | 74±3 | DN100 | 4500 | 2860 | 1600 | 1800 |
| 8 | 116 | 16.8-28.0 | 593.3-988.8 | 185 | 250 | 74±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| 10 | 145 | 15.0-25.0 | 529.7-882.9 | 185 | 250 | 74±3 | DN100 | 4500 | 2860 | 1600 | 1800 | |
| HYWV-200G | 7 | 102 | 21.6-36.0 | 762.8-1271.3 | 200 | 270 | 74±3 | DN125 | 4800 | 3150 | 1850 | 2050 |
| 8 | 116 | 19.8-33.0 | 699.2-1165.4 | 200 | 270 | 74±3 | DN125 | 4800 | 3150 | 1850 | 2050 | |
| 10 | 145 | 16.2-27.0 | 572.1-953.5 | 200 | 270 | 74±3 | DN125 | 4800 | 3150 | 1850 | 2050 | |
| HYWV-250G | 7 | 102 | 25.8-43.0 | 911.1-1518.5 | 250 | 350 | 74±3 | DN125 | 5200 | 3150 | 1850 | 2050 |
| 8 | 116 | 24.6-41.0 | 868.7-1447.9 | 250 | 350 | 74±3 | DN125 | 5200 | 3150 | 1850 | 2050 | |
| 10 | 145 | 22.8-38.0 | 805.2-1342 | 250 | 350 | 74±3 | DN125 | 5200 | 3150 | 1850 | 2050 | |
Workshop of natural gas compressor
Our products
Our Certificate : CE and ISO certification
Our exhibition for the gas compressor
Our Service for diaphragm compressor :
1.Service time : 24*7 Hours
2.Customized Service
3.Perfect pre-sale,sale,after-sales service
4.FAT
5.Onsite commissioning Service
6.18 months warranty period
FAQ :
Q1.How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q2.What’s payment term?
A: T/T, L/C, D/P, Western Union, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.
Q3 : How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 18 Months |
|---|---|
| Warranty: | 18 Months |
| Lubrication Style: | Oil-free |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
What Industries Commonly Use Water-Lubricated Air Compressors?
Water-lubricated air compressors find applications in various industries where specific operating conditions or regulatory requirements make them a preferred choice. Here are some industries that commonly utilize water-lubricated air compressors:
- Food and Beverage: Water-lubricated compressors are often used in the food and beverage industry due to their ability to provide clean, oil-free compressed air. Compressed air is widely used in food processing and packaging applications, such as pneumatic conveying, product mixing, bottle blowing, and food packaging. Water-lubricated compressors help maintain product purity, prevent oil contamination, and comply with stringent food safety standards.
- Pharmaceutical and Healthcare: The pharmaceutical and healthcare industries have strict requirements for compressed air quality, especially in applications where compressed air comes into direct contact with pharmaceutical products or is used in critical medical equipment. Water-lubricated compressors offer a viable solution by providing lubrication without the risk of oil contamination. They are commonly used for processes such as air agitation, medical device manufacturing, and laboratory applications.
- Electronics and Semiconductors: In electronics and semiconductor manufacturing, where sensitive components and cleanroom environments are involved, oil-free compressed air is essential. Water-lubricated compressors can provide the required level of air purity without introducing oil particles or vapors that could contaminate the electronics or semiconductor production processes. They are used in applications such as chip manufacturing, circuit board assembly, and cleanroom air supply.
- Textile and Garment: Water-lubricated compressors are utilized in the textile and garment industry, where the presence of oil can negatively impact the quality and appearance of fabrics or garments. Compressed air is widely used in textile machinery for tasks such as spinning, weaving, and air jet looms. Water-lubricated compressors ensure oil-free air supply, preventing oil stains or contamination that could affect the final textile or garment products.
- Environmental and Wastewater Treatment: Water-lubricated compressors are also employed in environmental and wastewater treatment applications. These compressors help supply air for aeration processes in wastewater treatment plants, where air is introduced into the treatment tanks to facilitate the growth of beneficial bacteria for biological treatment. Water-lubricated compressors provide oil-free compressed air, ensuring the purity and effectiveness of the treatment process.
While the industries mentioned above commonly use water-lubricated air compressors, it is important to note that these compressors may also find applications in other sectors where oil-free, contamination-free compressed air is required for specific processes or environmental considerations.
.webp)
How Do You Troubleshoot Common Problems with Water-Lubrication Systems?
When encountering common problems with water-lubrication systems, it is essential to follow a systematic troubleshooting approach. Here’s a detailed explanation of the steps involved in troubleshooting common issues with water-lubrication systems:
Step 1: Identify the Problem:
The first step is to identify the specific problem or symptom that is affecting the water-lubrication system. Common problems may include inadequate lubrication, water leaks, abnormal noises, or reduced system performance. Understanding the specific issue will help in determining the appropriate troubleshooting steps.
Step 2: Check Water Supply:
Verify that there is a proper water supply to the system. Ensure that the water source is connected and flowing adequately. Check for any obstructions or restrictions in the water lines that may be affecting the water flow to the lubrication system.
Step 3: Inspect Water Filters and Strainers:
Water filters and strainers are used in water-lubrication systems to remove debris and impurities from the water. Inspect these filters and strainers for clogs or blockages that may be hindering the water flow. Clean or replace the filters as necessary to ensure proper water filtration.
Step 4: Verify Water Pressure:
Check the water pressure within the system to ensure it falls within the recommended range. Low water pressure can result in inadequate lubrication, while high water pressure can cause leaks or damage to the system. Use a pressure gauge to measure the water pressure and adjust it if necessary according to the manufacturer’s guidelines.
Step 5: Examine Water-Lubrication Components:
Closely inspect the various components of the water-lubrication system, including the water pump, distribution lines, lubrication points, and seals. Look for signs of wear, damage, or misalignment that may be contributing to the problem. Tighten loose connections and replace any damaged or worn-out components as needed.
Step 6: Check for Air in the System:
Air trapped within the water-lubrication system can affect its performance. Bleed the system to remove any trapped air. Follow the manufacturer’s instructions for bleeding air from the system, which typically involves opening specific valves or vents until a steady flow of water is achieved.
Step 7: Inspect Cooling Mechanisms:
Water-lubrication systems often incorporate cooling mechanisms, such as heat exchangers or radiators, to dissipate excess heat. Inspect these cooling components for blockages, corrosion, or leaks that may be compromising their effectiveness. Clean or repair the cooling mechanisms as necessary to ensure proper heat dissipation.
Step 8: Consult Manufacturer Documentation:
If the troubleshooting steps above do not resolve the problem, refer to the manufacturer’s documentation, such as the user manual or technical specifications. These resources may provide specific troubleshooting guidelines, diagnostics, or additional maintenance procedures for the water-lubrication system.
Step 9: Seek Professional Assistance:
If the problem persists or if the troubleshooting steps are beyond your expertise, it is advisable to seek professional assistance. Contact the manufacturer’s technical support or consult a qualified technician with experience in water-lubrication systems. They can provide expert guidance and assistance in resolving complex issues.
By following these troubleshooting steps, you can effectively identify and address common problems encountered in water-lubrication systems, ensuring optimal performance and reliability.
.webp)
What Maintenance Is Required for Water-Lubricated Air Compressors?
Maintaining water-lubricated air compressors involves several key maintenance tasks to ensure their optimal performance and longevity. Here are the maintenance requirements typically associated with water-lubricated air compressors:
- Regular water quality checks: It is essential to monitor the quality of the water used for lubrication in the compressor. Regular water analysis helps identify any potential contaminants, such as minerals or impurities, that may affect compressor performance or lead to corrosion. If necessary, appropriate water treatment measures should be taken to maintain the desired water quality.
- Drain and flush water systems: Periodically draining and flushing the water systems of the compressor helps remove any sediment, debris, or accumulated contaminants. This prevents blockages, maintains water flow, and ensures the cleanliness of the system.
- Inspect and clean filters: Filters in the water system, such as intake filters or water separation filters, should be inspected regularly and cleaned or replaced as needed. Clean filters help maintain proper water flow, prevent clogging, and protect internal components from damage or corrosion.
- Check for leaks: Regularly inspect the compressor system for any signs of water leaks. Leaks can lead to water loss, reduced lubrication performance, and potential damage to the compressor components. Any identified leaks should be promptly repaired to maintain the integrity of the system.
- Monitor and maintain proper water levels: Ensure that the water levels in the compressor are maintained within the recommended range. Low water levels can result in inadequate lubrication and increased friction, while high water levels may lead to excessive moisture in the system. Regularly check and adjust the water levels as necessary.
- Inspect and maintain cooling systems: Water-lubricated compressors often utilize water for cooling purposes. Inspect and maintain the cooling systems, such as heat exchangers or radiators, to ensure proper heat dissipation. Clean any accumulated debris or deposits that may impede cooling efficiency.
- Follow manufacturer guidelines: It is crucial to follow the manufacturer’s maintenance guidelines and recommendations specific to the water-lubricated air compressor model being used. These guidelines may include additional maintenance tasks or intervals that are necessary for optimal performance and warranty compliance.
Regular and proactive maintenance of water-lubricated air compressors helps ensure their reliable operation, extends their lifespan, and minimizes the risk of performance issues or component failures. It is advisable to consult the compressor’s documentation and seek guidance from the manufacturer or a qualified technician to establish a comprehensive maintenance routine specific to the equipment.


editor by CX 2024-02-13