Product Description
Product Description
1.Atals-Copco Air-End
Atlas-Copco Group 149years air-end research & development experience.
2.High Efficiency & Save Energy
High efficiency & energy saving intake valve,keep in lower unloading pressure and avoid large energy consumption when
3.Easy Installation & Operation
Compressor is filled with inbrication oil before delivering. You can operate it after installing and power on.
4.Low noise & low vibration
Atlas-copco air-end, low noise & vibration.
5.Reliability & Safety
Reliability bigger cooler, lower operating temperature.
Detailed Photos
Product Parameters
| LSW-8A PM-8 | 8 | 116 | 0.5~1.1 | 10 | 7.5 | 510 | Air Cooled |
Belt Driven | 57±2 | G3/4” | — | — | 800*800*1200 |
| LSW-8A PM-10 | 10 | 145 | 0.4~0.9 | ||||||||||
| LSW-11A PM-8 | 8 | 116 | 0.7~1.7 | 15 | 11 | 620 | Air Cooled |
Direct Driven | 60±2 | G3/4” | — | — | 1200*855*1335 |
| LSW-11A PM-10 | 10 | 145 | 0.6~1.4 | ||||||||||
| LSW-15A PM-8 | 8 | 116 | 1.0~2.3 | 20 | 15 | 670 | Air Cooled |
Direct Driven | 60±2 | G3/4” | — | — | 1200*855*1335 |
| LSW-15A PM-10 | 10 | 145 | 0.9~2.0 | ||||||||||
| LSW-18.5A PM-8 | 8 | 116 | 1.2~3.0 | 25 | 18.5 | 730 | Air Cooled |
Direct Driven | 63±2 | G1” | — | — | 1400*1571*1340 |
| LSW-18.5A PM-10 | 10 | 145 | 1.0~2.6 | ||||||||||
| LSW-22A PM-8 | 8 | 116 | 1.5~3.6 | 30 | 22 | 780 | Air Cooled |
Direct Driven | 63±2 | G1” | — | — | 1400*1571*1340 |
| LSW-22A PM-10 | 10 | 145 | 1.3~3.0 | ||||||||||
| LSW-30A PM -8 | 8 | 116 | 2.1~5.1 | 40 | 30 | 1150 | Air Cooled |
Direct Driven | 66±2 | G1-1/4” | — | — | 1650*1180*1505 |
| LSW-30A PM-10 | 10 | 145 | 1.8~4.3 | ||||||||||
| LSW-37A PM-8 | 8 | 116 | 2.6~6.4 | 50 | 37 | 1200 | Air Cooled |
Direct Driven | 66±2 | G1-1/4” | — | — | 1650*1180*1505 |
| LSW-37A PM-10 | 10 | 145 | 2.2~5.4 | ||||||||||
| LSW-45W PM-8 | 8 | 116 | 3.3~8.2 | 60 | 45 | 1490 | Water Cooled |
Direct Driven | 68±2 | G2” | G1-1/2” | 10 | 1800*1360*1670 |
| LSW-45W PM-10 | 10 | 145 | 2.8~7.0 | ||||||||||
| LSW-55W PM-8 | 8 | 116 | 4.0~10 | 75 | 55 | 1570 | Water Cooled |
Direct Driven | 69±2 | G2” | G1-1/2” | 12 | 1800*1360*1670 |
| LSW-55W PM-10 | 10 | 145 | 3.4~8.5 | ||||||||||
| LSW-75W PM-8 | 8 | 116 | 5.2~13.0 | 75 | 55 | 1750 | Water Cooled |
Direct Driven | 69±2 | G2” | G1-1/2” | 18 | 1800*1360*1670 |
| LSW-75W PM-10 | 10 | 145 | 4.4~11.1 | ||||||||||
| LSW-90W PM-8 | 8 | 116 | 6.9~17.2 | 120 | 90 | 2450 | Water Cooled |
Direct Driven | 73±2 | G2-1/2” | G1-1/2” | 20 | 2200*1550*1800 |
| LSW-90W PM-10 | 10 | 145 | 5.9~14.6 | ||||||||||
| LSW-110W PM-8 | 8 | 116 | 8.2~20.3 | 150 | 110 | 2580 | Water Cooled |
Direct Driven | 75±2 | G2-1/2” | G2” | 24 | 2200*1550*1800 |
| LSW-110W PM-10 | 10 | 145 | 7.0~17.3 | ||||||||||
| LSW-132W PM-8 | 8 | 116 | 9.7~24.1 | 180 | 132 | 2700 | Water Cooled |
Direct Driven | 75±2 | G2-1/2” | G2” | 30 | 2700*1550*1800 |
| LSW-132W PM-10 | 10 | 145 | 8.2~20.5 | ||||||||||
| LSW-160W PM-8 | 8 | 116 | 11.3~28.2 | 210 | 160 | 3900 | Water Cooled |
Direct Driven | 77±2 | G3” | G3” | 35 | 3000*1800*2100 |
| LSW-160W PM-10 | 10 | 145 | 9.6~24.0 | ||||||||||
| LSW-185W PM-8 | 8 | 116 | 12.9~32.1 | 240 | 185 | 4050 | Water Cooled |
Direct Driven | 77±2 | G3” | G3” | 38 | 3000*1800*2100 |
| LSV180W PM-10 | 10 | 145 | 11.0~27.3 | ||||||||||
| LSW-200W PM-8 | 8 | 116 | 13.8~34.5 | 270 | 200 | 4200 | Water Cooled |
Direct Driven | 78±2 | G4” | G4” | 42 | 3000*1800*2100 |
| LSW-200W PM-10 | 10 | 145 | 11.7~29.3 | ||||||||||
| LSW-220W PM-8 | 8 | 116 | 15.5~38.6 | 295 | 220 | 4400 | Water Cooled |
Direct Driven | 79±2 | G4” | G4” | 47 | 3100*1850*2100 |
| LSW-220W PM-10 | 10 | 145 | 13.2~32.8 | ||||||||||
| LSW-250W PM-8 | 8 | 116 | 17.1~42.6 | 340 | 250 | 4800 | Water Cooled |
Direct Driven | 79±2 | G4” | G4” | 53 | 3100*1850*2100 |
| LSW-250W PM-10 | 10 | 145 | 14.5~36.2 |
Company Profile
FAQ
Q1: Are you a manufacturer or trading company?
A1: Xihu (West Lake) Dis.in is professional screw air compressor factory located in HangZhou, China, CHINAMFG is Xihu (West Lake) Dis.in overseas market sales representative.
Q2: Xihu (West Lake) Dis.in is real member of Atlas-copco group?
A2: Yes, in 2571, Sweden Atlas-copco 100% acquired Xihu (West Lake) Dis.in.
Q3: Xihu (West Lake) Dis.in air-end from Atlas-copco?
A3: Yes, Xihu (West Lake) Dis.in LS/LSV, LOH, LSH and CS series air compressors all use Atlas Copco’s air-end.
Q4: What’s your delivery time?
A4: about 10-20days after you confirm the order, other voltage pls contact with us.
Q5: How long is your air compressor warranty?
A5: One year for the whole machine since leave our factory.
Q6: What’s the payment term?
A6:We accept T/T, LC at sight, Paypal etc.
Also we accept USD, RMB, JPY, EUR, HKD, GBP, CHF, KRW.
Q7: What’s the Min. Order requirement?
A7: 1unit
Q8: What service you can support?
A8: We offer after-sales service, custom service, production view service and one-stop service.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Type: | Twin-Screw Compressor |
| Samples: |
US$ 49097/unit
1 unit(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How Do Water-Lubricated Air Compressors Impact Compressed Air Quality?
Water-lubricated air compressors can have an impact on the quality of the compressed air they produce. Here’s a detailed explanation of how water-lubricated air compressors can affect compressed air quality:
Moisture Content:
- Condensation: Water-lubricated compressors introduce moisture into the compressed air system. During the compression process, as the air cools downstream, moisture can condense and accumulate. This moisture can lead to issues such as corrosion, rust, and contamination of downstream equipment or processes.
- Water Carryover: If the compressor’s water separation mechanisms are not efficient or if there are malfunctions in the water removal systems, water droplets or mist may carry over into the compressed air. This can negatively impact the quality of the compressed air and introduce moisture-related issues downstream.
Contamination:
- Oil Contamination: In some water-lubricated compressors, there is a potential for oil to mix with the water used for lubrication. If oil and water emulsify or if there are leaks in the compressor system, oil contamination may occur. Oil-contaminated compressed air can have adverse effects on downstream processes, equipment, and products. It can lead to contamination, reduced performance of pneumatic components, and potential health and safety concerns.
- Particulate Contamination: Water-lubricated compressors can introduce particulate matter, such as sediment, debris, or rust, into the compressed air system. This can occur if the water supply or water treatment systems are not adequately filtered or maintained. Particulate contamination can clog or damage pneumatic equipment, affect product quality, and cause operational issues in downstream applications.
Preventive Measures:
- Water Separation: Water-lubricated compressors employ various water separation mechanisms to remove moisture from the compressed air. This includes moisture separators, water traps, or coalescing filters that are specifically designed to capture and remove water droplets or mist from the compressed air stream. Regular maintenance and inspection of these separation systems are necessary to ensure their proper functioning.
- Air Treatment: Additional air treatment components, such as air dryers or desiccant systems, can be installed downstream of water-lubricated compressors to further reduce moisture content in the compressed air. These systems help to remove moisture that may have carried over from the compressor and ensure that the compressed air meets the required dryness standards for specific applications.
- Proper Maintenance: Regular maintenance of water-lubricated compressors is essential to minimize the potential impact on compressed air quality. This includes routine inspection, cleaning, and replacement of filters, lubrication systems, and water separation components. Addressing any leaks, malfunctioning components, or system issues promptly can help maintain the integrity of the compressed air and prevent contamination or excessive moisture levels.
By implementing appropriate water separation mechanisms, air treatment systems, and maintenance practices, the impact of water-lubricated air compressors on compressed air quality can be minimized. It is important to consider the specific requirements of the application and follow industry standards and guidelines to ensure the desired compressed air quality is achieved.
.webp)
What Is the Role of Filtration in Water-Lubricated Air Compressors?
Filtration plays a crucial role in water-lubricated air compressors, serving several important purposes. Here’s a detailed explanation of the role of filtration in water-lubricated air compressors:
Contaminant Removal:
- Particle Filtration: Filtration systems in water-lubricated air compressors are designed to remove particles and contaminants from the water. These can include sediment, rust, debris, and other solid particles that may be present in the water supply. Removing these contaminants is essential to prevent blockages, clogging, and damage to the compressor components.
- Oil Removal: In some cases, water used in compressors may contain traces of oil or hydrocarbons. Filtration systems can also help remove oil and hydrocarbon contaminants from the water, ensuring that the lubrication system remains clean and effective.
Protection of Components:
- Lubrication System: Filtration prevents contaminants from reaching the lubrication system of water-lubricated air compressors. This helps maintain the cleanliness and integrity of the lubricant, ensuring optimal lubrication performance and minimizing wear on the compressor’s moving parts. Clean and filtered water can enhance the efficiency and lifespan of the compressor’s lubrication system.
- Heat Exchangers and Cooling Systems: Water-lubricated compressors often rely on heat exchangers and cooling systems to regulate the temperature of the compressed air and the compressor itself. Filtration helps protect these components by preventing the accumulation of debris and contaminants that can hinder heat transfer and reduce the cooling efficiency. Clean water free from particles and contaminants promotes effective heat exchange and cooling.
Prevention of System Fouling:
- Scaling and Deposits: Filtration systems also help prevent scaling and deposits that can occur when water with high mineral content or hardness is used. These deposits can accumulate on the internal surfaces of the compressor, heat exchangers, or other components, reducing their efficiency and potentially causing operational issues. By removing impurities and controlling mineral content, filtration minimizes the risk of scaling and deposits.
Extended Equipment Lifespan:
- Component Protection: By effectively removing contaminants, filtration systems contribute to the protection and longevity of water-lubricated air compressor components. Clean and filtered water reduces the risk of component wear, corrosion, fouling, and blockages, ultimately extending the lifespan of the compressor and reducing maintenance and replacement costs.
Regular Maintenance and Monitoring:
- Filter Replacement: Filtration systems require regular maintenance, including the replacement or cleaning of filters. The frequency of filter replacement depends on factors such as water quality, usage conditions, and the specific requirements of the compressor manufacturer. Regular maintenance ensures that the filtration system continues to effectively remove contaminants and protect the compressor components.
- Monitoring Water Quality: Alongside filtration, monitoring the quality of the water used in water-lubricated compressors is essential. This can involve periodic water analysis, measurement of key parameters such as pH or conductivity, and visual inspections. Monitoring helps identify any changes in water quality or potential issues with the filtration system, allowing for timely maintenance or corrective actions.
In summary, filtration plays a critical role in water-lubricated air compressors by removing contaminants, protecting components, preventing system fouling, and extending equipment lifespan. By maintaining clean and filtered water, filtration systems contribute to the efficient operation, reliability, and longevity of water-lubricated compressors.
.webp)
Are There Any Downsides to Using Water-Lubricated Air Compressors?
While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:
- Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
- Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
- Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
- Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
- Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.
Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.


editor by CX 2024-02-05